INTRODUÇÃO À FILOSOFIA MATEMÁTICA
BERTRAND RUSSELL

Introdução à Filosofia Matemática

Edição e tradução de
Augusto J. Franco de Oliveira
(CEHFC/UE)
Direitos reservados para a tradução de Augusto J. Franco de Oliveira

Composto em EXP® 5.0.2

Traduzido do original de Bertrand Russell
Introduction to Mathematical Philosophy,
Londres: George Allen & Unwin, 1919,
por Augusto J. Franco de Oliveira

Centro de Estudos de História e Filosofia da Ciência da Universidade de Évora
francoli@kqnet.pt

1.ª edição (provisória), Janeiro de 2006
ÍNDICE

Prefácio do Tradutor.. 7
Prefácio do Autor.. 10
Nota do editor... 11
I. A progressão dos números naturais..................13
II. Definição de número..24
III. Finitude e indução matemática..........................33
IV. Definição de ordem..41
V. Variedades de relações....................................53
VI. Similaridade de relações................................62
VII. Números racionais, reais e complexos...............72
VIII. Números cardinais infinitos.............................85
IX. Cadeias infinitas e ordinais...........................96
X. Limites e continuidade................................103
XI. Limites e continuidade de funções..................112
XII. Escolhas e o axioma multiplicative................121
XIII. O axioma do infinito e os tipos lógicos...........134
XIV. Incompatibilidade e teoria da dedução...............145
XV. Funções proposicionais................................156
XVI. Descrições...167
XVII. Classes...179
XVIII. Matemática e lógica......................................191
 Índice remissivo...203
 Leituras recomendadas.................................207
PREFÁCIO DO TRADUTOR

O livrinho cuja tradução só agora se apresenta ao público português é meu conhecido de longa data. Russell e Einstein foram os meus heróis de juventude, e os seus livros constituíam um desafio para o jovem inquisitivo que os lia e tentava perceber. Einstein representava a nova Física, aquela Física revolucionária e «marginal» de que não se falava no ensino liceal. Russell era o grande filósofo e lógico socialmente empenhado. Naquelas partes das obras de Einstein e Russell que conseguia compreender, uma coisa era evidente: a grande clareza da exposição e a preocupação de escrever para um largo público. Isto era, em si mesmo, uma ideia subversiva, na medida em que o pensamento claro e o conhecimento científico e filosófico eram, a meu ver, elementos necessários — imprescindíveis — da luta pela libertação política e cultural dos povos. Continuo a pensar do mesmo modo.

A oportunidade para voltar a ler este livrinho e retomar a tradução há muitos anos iniciada surgiu recentemente, por força da análise dos trabalhos de lógica de Edmundo Curvelo (1913-1954) de que me tenho ocupado ultimamente. São por demais evidentes as afinidades filosóficas entre Curvelo e Russell, de um lado, e o movimento conhecido por Círculo de Viena, por outro.1

Russell é um expoente da chamada corrente logicista na filosofia e fundamentos da matemática, e este livro é, entre outras coisas, uma contribuição popular para a compreensão desta corrente, dos seus objectivos e programa. Uma característica essencial desta corrente é a crença de que a matemática (ou parte da matemática) se pode reduzir à lógica, e um instrumento técnico desta redução é a teoria dos tipos que Russell desenvolveu em várias publicações, com especial relevância para os três volumes dos Principia Mathematica (1910-13) em parce-

ria com Alfred North Whitehead. A teoria dos tipos sobrevive como sistema fundacional, mas quando este livro foi escrito começava a tornar-se evidente que os fundamentos da teoria dos tipos não eram de natureza puramente lógica (é o caso, por exemplo, do axioma multiplicativo, p. 126, do axioma do infinito, formulado logo no princípio do Cap. XIII, p. 134, e do axioma da redutibilidade, p. 188), o que desde logo compromete irremediavelmente a pretensão reducionista dos logicistas, mas não compromete aquela parte do programa científico de reconstrução da matemática que é independente de considerações sobre a natureza ora lógica ora matemática das entidades e dos princípios básicos.

Mas o conteúdo deste livro é em boa parte independente dos pressupostos logicistas, além de valer como exposição elementar dos fundamentos do logicismo como projecto de reconstrução das matemáticas e de alguns tópicos de lógica tradicional que Russell fez progredir significativamente (como a teoria das descrições, Cap. XVI). Por outro lado, o livro realiza um ponto importante na concepção do autor sobre a filosofia matemática: um modo matemático de conceber a filosofia da matemática, demasiado técnico ou exigente para alguns, mas certeiro na pertinência, já então (ver Nota do Editor, adiante) e mais ainda na actualidade. Recentemente, num seminário, um estudante de filosofia perguntava quais os conhecimentos básicos, de matemática e lógica moderna, necessários para compreender as polémicas e as correntes filosóficas nos fundamentos da matemática. Indiquei serem necessários, no mínimo, alguns conhecimentos da teoria dos conjuntos (intuitiva, e axiomática) e de alguns dos resultados fundamentais (e suas demonstrações) da lógica matemática no século XX, nomeadamente, dos metateoremas de Gödel (da completude semântica da lógica de 1.ª ordem, 1930, e da incompletude dos sistemas formais, 1931). Acrescento agora que este livrinho, apesar de algumas limitações que comentarei mais adiante e em notas editoriais ao longo do texto, seria um começo muito bom.

Foram duas as preocupações principais nesta tradução, que não foi fácil. Em primeiro lugar, tentar manter o mais possível o estilo e a

3 Outras leituras recomendadas são indicadas na bibliografia final.
clareza de exposição do autor. Isto significou resistir à tentação de introduzir no texto símbolos e notações que permitiriam abreviar significativamente algumas passagens, facilitando a leitura ao público com alguma formação matemática, mas criando barreiras dificilmente transponíveis pelos outros públicos que o autor tinha em mente. É necessário saber que Russell teve a intenção de escrever para o grande público e respeitar essa intenção, pois talvez ninguém mais do que ele seria capaz de pautar a exposição com o simbolismo mais feroz e omnipresente alguma vez visto (o simbolismo dos Principia). Em segundo lugar, actualizar alguma terminologia e complementar o texto com algumas explicações que julgamos úteis ou imprescindíveis à sua compreensão pelo leitor actual, e algumas indicações bibliográficas, em notas de rodapé. Também aqui se resistiu à modernização per se, pois se é verdade que existem muitos livros modernos e bem escritos sobre a teoria dos conjuntos, a lógica matemática e a filosofia da matemática, não é menos verdade que continua a justificar-se a leitura do livro que Russell realmente escreveu, cujo sucesso editorial ao longo das muitas décadas de sucessivas reimprenções, sem quaisquer alterações, deve fazer reflectir os arautos da modernidade pela modernidade.

AUGUSTO J. FRANCO DE OLIVEIRA
Setembro de 2005

4 Russell diz na conclusão do último capítulo que «É impossível transmitir adequadamente as ideias contidas neste assunto enquanto nos abstivermos do uso de símbolos lógicos.» Deve-se dizer, todavia, que houve progressos notáveis, no sentido da simplificação na simbolografia desde a época em que o livro foi escrito e que, actualmente, alguma simbolografia lógica não seria tão repulsiva ao leitor moderno como seria a simbolografia que Russell utilizaria se assim pretendesse. Isto explica por que razão não excluímos de algumas notas de rodapé exemplos de simbolização moderna de expressões da lógica elementar, e outras. Não obstante ter sido necessário modernizar alguma terminologia em diferentes capítulos, resistimos a modificações mais profundas como as que seriam necessárias nos capítulos VII, X e XI, por exemplo, para os colocar ao nível do que é de esperar hoje em dia de uma introdução às noções topológicas (limites, continuidade) básicas. Encontrar o equilíbrio ideal nestas opções tem sido preocupação constante que perdurará para além da publicação desta tradução.

5 Todas as palavras ou observações inseridas no texto ou em notas de rodapé do tradutor (a partir da próxima) são incluídas entre colchetes [...].
PREFÁCIO DO AUTOR

Este livro pretende ser uma «Introdução» e não visa apresentar uma discussão completa dos problemas que aborda. Pareceu apropriadamente apresentar certos resultados, até agora somente ao alcance dos que já dominaram o simbolismo lógico, numa forma que ofereça o mínimo de dificuldade ao principiante. Foi despendido um grande esforço para evitar o dogmatismo no tocante às questões ainda sujeitas a sérias dúvidas e tal disposição dominou, até certo ponto, a escolha dos assuntos considerados. As partes iniciais da lógica matemática são menos definidamente conhecidas do que as suas partes mais avançadas, mas são pelo menos de igual interesse filosófico. Muito do que é apresentado nos capítulos que se seguem não pode ser apropriadamente chamado «filosofia», embora as questões consideradas tenham sido incluídas na filosofia enquanto não existia uma ciência satisfatória das mesmas. A natureza do infinito e da continuidade, por exemplo, pertenceu, em tempos idos, à filosofia, mas pertence hoje à matemática. Talvez não seja de considerar que a filosofia matemática, no sentido estrito, inclua resultados científicos definidos como os que foram obtidos nessa área; a filosofia da matemática deverá, naturalmente, tratar de questões que se situam na fronteira do conhecimento humano e sobre as quais ainda não se tem certeza relativa. Mas a especulação em torno destas questões dificilmente será frutífera, a menos que sejam conhecidas as partes mais científicas dos princípios da matemática. Um livro que trate destas coisas pode, portanto, ser considerado uma introdução à filosofia matemática, embora dificilmente se possa afirmar que trate de uma parte da filosofia, excepto onde ultrapasse o seu próprio âmbito. Todavia, o livro aborda de facto um conjunto de conhecimentos que, para os que o aceitam, parece invalidar muito da filosofia tradicional e até boa parte do que é comum na actualidade. Deste modo, bem como pela sua repercussão em problemas ainda não resolvidos, a lógica matemática é relevante para a filosofia. Por este motivo e também por causa da importância intrínseca do assunto, poderá haver algum propósito numa apreciação sucinta dos principais resultados da lógica matemática, numa forma que não exija nem conhecimentos de matemática nem aptidão para o simbolismo matemático. Contudo, aqui, como em qualquer outro campo,
o método é mais importante do que os resultados, do ponto de vista das pesquisas posteriores; e o método não pode ser bem explicado dentro da estrutura de um livro como este. É de esperar que alguns leitores se mostrem suficientemente interessados para prosseguir no estudo do método pelo qual a lógica matemática pode ser tornada útil à investigação dos problemas tradicionais da filosofia. Este é, porém, um assunto que não se tentou abordar nas páginas que seguem.

BERTRAND RUSSELL

NOTA DO EDITOR
DA 1.ª EDIÇÃO (1919)

Aqueles que, baseando-se na distinção entre Filosofia Matemática e Filosofia da Matemática, pensam que este livro está deslocado nesta Coleção, fariam bem em ler o que o próprio autor diz a esse respeito no Prefácio. Não é necessário concordar com o que ele nos sugere como sendo o reaproveitamento do campo da filosofia motivado pela transferência dela para o campo da matemática de problemas como os de classe, continuidade e infinito, para compreender a relevância das definições e discussões que seguem para os trabalhos da «filosofia tradicional». Se os filósofos não puderem consentir que a crítica a estas categorias seja relegada para as ciências particulares é essencial, em todo o caso, que eles apreciem o significado preciso que a ciência da matemática, na qual estes conceitos desempenham um papel tão grande, lhes atribuí. Se, por outro lado, matemáticos houver para quem estas definições e discussões pareçam elaborações e complicações do que é simples, pode ser oportuno recordar-lhes do lado da filosofia que aqui, como noutras paragens, a aparência de simplicidade pode esconder uma complexidade que é da responsabilidade de alguém, filósofo ou matemático, ou, como o autor deste livro, ambas as coisas, desvendar.

J. H. MUIRHEAD
CAPÍTULO I

A progressão dos números naturais

A matemática é um assunto cujo estudo, quando iniciado nas suas partes mais familiares, pode ser conduzido em dois sentidos opostos. O mais comum é construtivo, no sentido da complexidade gradualmente crescente: dos inteiros para os fraccionários, os números reais, os números complexos; da adição e multiplicação para a diferenciação e integração e daí para a matemática superior. O outro sentido, menos familiar, avança, pela análise, para a abstracção e a simplicidade lógica sempre maiores; em vez de indagar o que pode ser definido e deduzido daquilo que se admite no começo, indaga-se que mais ideias e princípios gerais podem ser encontrados, em função dos quais o que fora o ponto de partida possa ser definido ou deduzido. É o facto de seguir este sentido oposto que caracteriza a filosofia matemática, em contraste com a matemática comum. Mas deve ser entendido que a diferença de sentido da pesquisa não está no assunto mas sim no estado de espírito. Os geómetras gregos antigos, ao passarem das regras de agrimensura empíricas egípcias para as proposições gerais pelas quais se constatou estarem aquelas regras justificadas, e daí para os axiomas e postulados de Euclides, estavam praticando a filosofia matemática, segundo a definição acima; porém, uma vez atingidos os axiomas e postulados, o seu emprego dedutivo, como encontramos em Euclides, pertencia à matemática no sentido comum. A distinção entre matemática e filosofia matemática depende do interesse que inspira a pesquisa e da etapa por esta atingida, e não das proposições que ocupam a investigação.

Podemos enunciar a mesma distinção de outra maneira. As coisas mais óbvias e fáceis da matemática não são as que aparecem lógicamente no início; são as que, do ponto de vista da dedução lógica, surgem em algum ponto intermédio. Assim como os corpos mais fáceis de ver não são os que se encontram muito perto ou muito longe, nem os muito grandes ou muito pequenos, também as concepções de
Introdução à Filosofia Matemática

mais fácil compreensão não são as muito complexas ou as muito simples (usando o termo «simples» no sentido lógico). E, da mesma forma como necessitamos de instrumentos de dois tipos, o telescópio e o microscópio, para ampliarmos o nosso poder visual, necessitamos de dois tipos de instrumento para ampliar a nossa capacidade lógica: um para nos fazer avançar até à matemática superior, outro para levar-nos de volta aos fundamentos lógicos das coisas que somos propensos a aceitar como factos consumados em matemática. Constataremos que, analisando as nossas noções matemáticas ordinárias, adquiriremos uma introspecção renovada, poderes novos e os meios de chegar a assuntos matemáticos inteiramente novos pela adopção de novas linhas de desenvolvimento após a nossa viagem regressiva. O propósito deste livro é simplesmente explicar a filosofia matemática de maneira não técnica, sem demorar nas partes que sejam de tal forma duvidosas ou difíceis que tornem escassamente possível um tratamento elementar. Um tratamento completo das mesmas encontra-se nos Principia Mathematica, o tratamento no presente livrinho tem mero carácter de introdução. Para a pessoa de instrução média de hoje, o ponto de partida óbvio da matemática seria dos a progressão dos números inteiros [positivos]:

7 [O termo do Autor é series, cuja tradução literal seria «série», e uma tradução imediata possível seria «sucessão» ou «sequência». Mas o significado técnico do termo series é dado no cap. IV, como significando o mesmo que «relação serial» (pág. 46) ou, em moderna terminologia, «relação de ordem total (ou ordem linear) estrita», ou simplesmente «cadeia», e não parece ser exactamente este o conceito envolvido no título e no texto deste capítulo (The series of natural numbers), que mais parece referir-se ao conjunto dos números naturais (apresentados pela ordem usual ou natural). Acontece que os termos série e sucessão têm significados técnicos bem determinados e distintos, na linguagem matemática (falada e escrita em Portugal). Também só mais adiante é que o Autor define progressão e justifica chamar-se progressão à sequência dos números naturais pela ordem natural, daí a utilização do termo na tradução deste capítulo. Noutras ocasiões utilizaremos o termo sistema (ou sistema ordenado), quando se pretende sublinhar a ordem, excepto quando algum outro termo (sucessão, sequência, cadeia) nos pareça tecnicamente mais adequado.]
I. A progressão dos números naturais

1, 2, 3, 4, ... etc.

Provavelmente só uma pessoa dotada de alguns conhecimentos de matemática pensaria em começar com 0 em vez de 1, mas admitiremos este grau de conhecimento e adoptaremos o ponto de vista de que é à progressão

0, 1, 2, 3, ... n, n + 1, ...

que nos estaremos a referir quando falarmos em «progressão dos números naturais».

Somente numa etapa muito avançada da civilização é que pudemos adoptar esta progressão para ponto de partida. Deve ter sido necessário muitos séculos para a descoberta de que um casal de faisões e um par de dias constituíam, ambos, exemplos do número 2: o grau de abstracção exigido está longe de fácil. E a descoberta de que 1 é um número deve ter sido difícil. Quanto ao 0, constitui uma adição bastante recente; os gregos e os romanos não dispunham de tal dígito. Se nos tivéssemos dedicado à filosofia matemática em tempos mais recuados, teríamos sido obrigados a começar com algo menos abstrato do que a progressão dos números naturais, a qual seria atingida num alguma etapa da nossa viagem regressiva. Quando os fundamentos lógicos da matemática se tiverem tornado mais familiares, poderemos começar ainda mais atrás, num ponto que constitui hoje uma etapa avançada da nossa análise. Mas, no momento, os números naturais parece representarem o que é mais fácil e familiar em matemática. Todavia, embora familiares, não são compreendidos. Pouquíssimas pessoas têm uma definição para o significado de «número» ou «0» ou «1». Não é difícil ver que, partindo de 0, pode-se atingir qualquer outro número natural por adições repetidas de 1, mas é necessário definirmos o que queremos dizer com as expressões «adiicionar 1» e «repetir». Estas questões não são de modo algum fáceis. Acreditou-se até recentemente que pelo menos algumas destas primeiras noções de aritmética deviam ser aceites como simples e primitivas demais para que fossem definidas. Como todos os termos definidos o são por meio de outros termos, é claro que o conhecimento humano terá sempre de se contentar em aceitar alguns termos como inteligíveis sem definição, a fim de ter um ponto de partida para as suas definições. Não é aceitável a existência de termos incapazes de ser definidos: é possível que, por mais que recuemos nas definições, possamos recuar ainda mais. Por outro lado, também é possível que, quando a análise tenha sido levada suficientemente longe, alcancemos termos realmente sim-
bles, e, portanto, logicamente incapazes do tipo de definição que importa analisar. Esta é uma questão que não necessitamos decidir; para os propósitos que temos em vista, e atendendo a que os poderes humanos são limitados, basta observar que as definições que nos são conhecidas terão sempre de começar em algum ponto, com termos não definidos no momento, embora talvez não definitivamente.

Toda a matemática pura tradicional, incluindo a geometria analítica, pode ser encarada como consistindo totalmente de proposições sobre os números naturais. Equivale a dizer que os termos que ocorrem podem ser definidos por meio dos números naturais e as proposições podem ser deduzidas das propriedades dos números naturais — com o acréscimo, em cada caso, das ideias e proposições da lógica pura.

O facto de toda a matemática pura tradicional poder ser derivada dos números naturais é uma descoberta razoavelmente recente, embora há muito suspeitada. Pitágoras, que acreditava que não apenas a matemática mas tudo o mais podia ser deduzido dos números, foi o descobridor do mais sério obstáculo no caminho do que é chamado «aritmetização» da matemática. Foi Pitágoras quem descobriu a existência dos incomensuráveis, e, em particular, a incomensurabilidade do lado de um quadrado com a diagonal. Se o comprimento do lado de um quadrado é 1 cm, o número de centímetros do comprimento da diagonal é igual à raiz quadrada de 2, que pareceu não ser número algum. O problema assim levantado só foi resolvido nos nossos dias e só foi completamente resolvido com a ajuda da redução da aritmética à lógica, que será explicada nos capítulos seguintes. De momento, consideraremos simplesmente como facto consumado a aritmetização

8 [Diz-se de duas grandezas e b da mesma dimensão (dois comprimentos, duas áreas, etc.) que são incomensuráveis se e só se nenhuma delas é múltipla de um múltiplo da outra: não existem inteiros positivos m e n tais que \(na = nb \). Isto equivale a dizer que a razão entre elas não é igual a nenhuma razão entre dois inteiros positivos.]

9 [Nesta afirmação, Russell está a pressupor uma determinada interpretação (a sua) dos trabalhos pioneiros de Dedekind (1888) e Peano (1889) na fundamentação da aritmética. A solução de Dedekind foi, por assim dizer, «mergulhada» na moderna teoria axiomática dos conjuntos, a qual só a muito custo se poderia considerar um ramo da lógica. Russell defende neste seu livro o seu ponto de vista sobre os fundamentos e a filosofia da matemática, conhecido por logismo, mas estou certo que até ele concordaria que a teoria axiomática dos conjuntos não se acomodaria facilmente às suas concepções.]
I. A progressão dos números naturais

da matemática, embora isto tenha constituído um feito da mais alta importância.

Uma vez reduzida toda a matemática pura tradicional à teoria dos números naturais, o passo seguinte na análise lógica foi reduzir esta própria teoria ao menor conjunto de premissas e termos não definidos dos quais pudesse ser deduzida. Este trabalho foi realizado por Peano. Ele mostrou que a teoria dos números naturais podia ser deduzida de três conceitos primitivos e cinco proposições primitivas, além das da lógica pura. Estes três conceitos e cinco proposições tornaram-se, deste modo, por assim dizer, o suporte de toda a matemática pura tradicional. Se elas pudessem ser definidas e demonstradas em termos de outras, também o poderia toda a matemática pura. O seu «peso» lógico, se me é permitido usar tal expressão, é igual ao de toda a série de ciências deduzidas da teoria dos números naturais; a verdade de todas estas ciências estará garantida caso esteja garantida a verdade das cinco proposições primitivas, desde que, naturalmente, nada haja de errôneo no aparato lógico também envolvido. A tarefa de analisar a matemática fica extraordinariamente facilitada por este trabalho de Peano.

Os três conceitos primitivos da aritmética de Peano são:

0, número, sucessor.

Por «sucessor» ele quer dizer o número seguinte na ordem natural. Equivale a dizer que o sucessor de 0 é 1, o sucessor de 1 é 2 e assim por diante. Por «número», quer dizer, no caso, a classe dos números naturais. Ele não pressupõe que conhecamos todos os números dessa classe, mas apenas saibamos o que queremos dizer quando dizemos que isto ou aquilo é um número, assim como sabemos o que queremos dizer quando dizemos «Joel é um homem», embora não

10 [Neste aspecto o trabalho de Peano foi antecipado por Richard Dedekind em 1888, num trabalho citado por Peano (Arithmetices principia, nova methodo exposita, Turin, 1889, reiterado em “Sul concetto di numero”, Rivista di matematica, I (1891), 87-102, 256-267) e por Russell mais adiante neste livro, o famoso Was sind und was sollen die Zahlen?, traduzido em inglês com o título The Nature and Meaning of Numbers, incluído no livrinho de R. Dedekind, Essays on the Theory of Numbers, Dover, 1963.]
11 [Não se deve perder de vista que o termo «sucessor», no presente contexto, tem o mesmo significado «sucessor imediato» em capítulos posteriores.]
12 Usaremos «número» neste sentido no presente capítulo. Mais adiante, a palavra será usada em sentido mais geral.
conhecemos todos os homens individualmente. As cinco proposições primitivas adoptadas por Peano são:

1. 0 é um número;
2. O sucessor de qualquer número é um número;
3. Não há dois números com um mesmo sucessor;
4. 0 não é sucessor de número algum;
5. Qualquer propriedade que pertença a 0, e também ao sucessor de todo o número que tenha essa propriedade, pertence a todos os números.

Essa última proposição é o princípio de indução matemática. Teremos muito a dizer relativamente à indução matemática no que segue; de momento, estamos interessados nela somente quanto à sua presença na análise da aritmética de Peano.

Consideremos, por alto, de que maneira a teoria dos números naturais resulta destes três conceitos e cinco proposições. Para começar, definimos 1 como «sucessor de 0», 2 como «sucessor de 1» e assim por diante. Podemos, obviamente, prosseguir com estas definições enquanto nos aprouver, pois, em virtude de (2), todo o número que atingirmos terá um sucessor, e, em virtude de (3), este número não poderá ser qualquer dos já definidos, porque, se assim fosse, dois números diferentes teriam o mesmo sucessor; e, em virtude de (4), nenhum dos números que alcancemos na progressão dos sucessores poderá ser 0. Assim, o sistema dos sucessores dá-nos uma progressão infindável de números continuamente novos. Em virtude de (5), todos os números estão nesta sequência, a qual começa com 0 e prossegue através dos sucessivos sucessores: porque (a) 0 pertence a esta progressão, e (b) se um número a ela pertence, também a ela pertencerá o seu sucessor, pois, de acordo com a indução matemática, todos os números pertencem à progressão.

Suponhamos que nos propomos definir a soma de dois números. Tomando qualquer número , definimos como e como sendo o sucessor de . Em virtude de (5), podemos verificar a posteriori, por indução matemática, que é realmente a soma de com 1) diz-se uma definição recursiva ou recorrente. A prova de que existe realmente (e é única) uma operação + com as duas propriedades em questão não é trivial, e foi dada por Dedekind em 1888 (Was sind und was sollen die Zahlen?, §9).
I. A progressão dos números naturais

isto dá uma definição da soma de \(m \) e \(n \), seja qual for o número \(n \). Podemos definir de forma semelhante o produto de dois números quaisquer. O leitor poderá facilmente convencer-se de que qualquer proposição elementar comum da aritmética pode ser provada por meio das nossas cinco premissas, e, caso sinta dificuldade, poderá encontrar a prova em Peano.

É tempo de abordarmos as considerações que tornam necessário avançar mais além do ponto a que chegou Peano, que representa o último aperfeiçoamento da «aritmetização» da matemática, até Frege, que primeiro conseguiu «logificar» a matemática, isto é, reduzir à lógica as noções aritméticas que os seus predecessores mostraram ser suficientes para a matemática. Não apresentaremos de facto neste capítulo as definições de número de Frege nem de números particulares, mas daremos algumas das razões pelas quais o tratamento dado por Peano é menos final do que parece. Em primeiro lugar, as três ideias primitivas de Peano, isto é, «0», «número» e «sucessor» são passíveis de infinitas interpretações diferentes, que satisfazem, todas, as cinco proposições primitivas. Daremos alguns exemplos.

(1) Admitamos que «0» signifique 100 e que «número» signifique os números de 100 em diante na progressão dos números naturais. Então, todas as nossas proposições primitivas são satisfeitas, até mesmo a quarta, porquanto, embora 100 seja o sucessor de 99, este não é um «número» no sentido por nós dado à palavra. É óbvio que qualquer número poderá substituir 100 neste exemplo.

(2) Deixemos que «0» tenha o significado usual, mas façamos com que «número» signifique o que geralmente chamamos «número par» e que o sucessor de um número seja o resultado de lhe adicionar dois. Então «1» ficará no lugar do número dois, «2» no do número quatro e assim por diante; a progressão dos «números» será agora:

0, dois, quatro, seis, oito, ...

As cinco proposições primitivas de Peano ainda são satisfeitas.

(3) Admitamos que «0» signifique o número um e que «número» signifique o conjunto:

\[\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots\} \]

procedeu deste modo em 1889, pois simplesmente assumiu que existia uma operação \(+\) com as propriedades (i) e (ii), consideradas como axiomas.]
Introdução à Filosofia Matemática

e que «sucessor» signifique «metade de». Os cinco axiomas de Peano serão verdadeiros neste conjunto.

É claro que tais exemplos se poderão multiplicar indefinidamente.14

Na verdade, qualquer sucessão infinita

\[x_0, x_1, x_2, x_3, \ldots, x_n, \ldots \]

sem repetições, com primeiro elemento e sem termo algum que não possa ser atingido a partir do primeiro num número finito de passos, fornece um conjunto de elementos que satisfaz os axiomas de Peano. Isto pode ser visto facilmente, embora a prova formal seja algo longa. Façamos \(0 \) significar \(x_0 \), «número» significar elemento do conjunto de todos os termos, e «sucessor» de \(x_n \) significar \(x_{n+1} \). Então,

1. \(0 \) é um número, isto é, \(x_0 \) é um elemento do conjunto;
2. O sucessor de qualquer número é um número, isto é, tomando qualquer elemento \(x_n \) no conjunto, \(x_{n+1} \) também pertence ao conjunto;
3. Não há dois números com um mesmo sucessor, isto é, se \(x_m \) e \(x_n \) são dois números diferentes do conjunto, \(x_{m+1} \) e \(x_{n+1} \) são diferentes; isto resulta do facto de (por hipótese) não haver repetições no conjunto;
4. \(0 \) não é o sucessor de número algum, isto é, nenhum elemento do conjunto vem antes de \(x_0 \);
5. Isto torna-se: Qualquer propriedade que pertence a \(x_0 \), e também a \(x_{n+1} \) desde que pertença a \(x_n \), pertence a todos os \(x \). Isto segue da propriedade correspondente dos números. Uma sucessão da forma:

14 [Todos estes exemplos, e muitos mais da mesma natureza, têm a propriedade de serem «isomorfos», quer dizer, por outras palavras, exibem a mesma «estrutura». Na realidade, qualquer sistema de objectos, de natureza qualquer, que satisfaça os cinco axiomas de Dedekind (ver nota 13) tem esta propriedade (dita de categoricidade ou monomorfia). Quanto aos cinco axiomas de Peano (na realidade eram nove, sendo o último o de indução, formulado em termos de classes) a questão depende do que se entender por «propriedade» na formulação do axioma de indução (5). Não é oportuno nem tecnicamente viável tecer mais considerações sobre este assunto nesta altura. Acrescente-se, todavia, que tanto a versão da teoria dos números naturais de Russell como a versão correspondente na teoria axiomática dos conjuntos (Zermelo-Fraenkel) são imunes ao problema que Russell parece encarar como um inconveniente do método axiomático, nomeadamente, a multiplicidade de interpretações diferentes que satisfazem os cinco axiomas de Peano.]
I. A progressão dos números naturais

na qual há um primeiro termo, um sucessor para cada termo (de modo a não haver um último termo), não há repetições e qualquer termo pode ser atingido, partindo do início, por um número finito de passos, é chamada uma progressão. As progressões são de grande importância nos fundamentos da matemática. Como vimos, toda a progressão satisfaz os cinco axiomas de Peano. Pode ser provado, inversamente, que todo o sistema que verifique os cinco axiomas de Peano é uma progressão. Portanto, estes cinco axiomas podem ser usados para definir a classe das progressões: «progressões» são «aqueles sistemas que verificam estes cinco axiomas». Qualquer progressão pode ser tomada para base da matemática pura: podemos dar o nome «0» ao seu primeiro termo, o nome «número» a qualquer membro do conjunto dos seus termos e o nome «sucessor» ao termo seguinte na progressão. A progressão não precisa ser composta de números: pode ser composta de pontos no espaço, ou instantes no tempo ou quaisquer outros elementos dos quais haja uma infinidade inesgotável. Cada progressão dará origem a uma interpretação de todas as proposições da matemática pura tradicional; todas estas interpretações possíveis serão igualmente verdadeiras.

Nada há no sistema de Peano que nos permita distinguir entre estas diferentes interpretações dos seus conceitos primitivos. Admite-se que sabemos o que queremos dizer por «0» e que não devemos supor que este símbolo signifique 0 ou a Agulha de Cleópatra ou qualquer das outras coisas que possa significar.

15 [Em português não há um termo único para designar uma sucessão com as propriedades referidas, a que Russell chama progressão, mas este conceito ficaria bem representado pela expressão «enumeração (ou sucessão) sem repetições», ou simplesmente «enumeração», já que neste livro não há ocasião de falar em enumerações com repetições. O termo «progressão» tem habitualmente, entre nós, significados mais restritos: uma sucessão \(x_0, x_1, x_2, \ldots, x_n, \ldots\) em que a diferença \(x_{n+1} - x_n\) entre quaisquer dois termos consecutivos é constante (progressão aritmética), ou em que a razão de dois termos consecutivos \(x_{n+1}/x_n\) é constante (progressão geométrica). É claro que a sucessão dos números naturais é uma progressão nos dois primeiros sentidos (a diferença entre dois números consecutivos quaisquer é igual a 1), e toda a progressão aritmética (infinita) no segundo sentido é uma progressão no sentido de Russell, mas não reciprocamente. Em todo o caso, decidimos manter o termo usado pelo autor.]

16 [Nome de um antigo obelisco egípcio, de que existiam originalmente nove cópias. Duas destas cópias estavam no Templo de César em Alexandria e
O facto de «0», «número» e «sucessor» não poderem ser definidos por meio dos axiomas de Peano, devendo ser entendidos independentemente, é um ponto importante. Não devemos meramente querer que os nossos números satisfaçam fórmulas matemáticas, mas também que se apliquem de modo correcto a objectos comuns. Queremos ter dez dedos, dois olhos e um nariz. Um sistema no qual «1» significasse 100 e «2» significasse 101, e assim por diante, poderia ser muito bom para a matemática pura, mas não se prestaria à vida quotidiana. Queremos que «0» e «número» e «sucessor» tenham significados que nos dêem as devidas porções de dedos, olhos e nariz. Já temos algum conhecimento (embora não suficientemente articulado ou analítico) do que queremos dizer por «1» e «2» e assim por diante, e o uso que fazemos dos números em aritmética deverá conformar-se a este conhecimento. Não podemos garantir que o mesmo se verifique por meio do método [axiomático] de Peano; o máximo que podemos fazer, caso adoptemos este método, é declarar que «sabemos o que queremos dizer por “0”, “número” e “sucessor”, embora não possamos explicar o que queremos dizer em termos de outros conceitos mais simples». É legítimo afirmar tal coisa quando necessário e todos temos de fazê-lo alguma vez; mas constitui objectivo da filosofia matemática evitá-lo pelo mais largo tempo possível. Graças à teoria lógica da aritmética podemos evitá-lo por muito tempo.

Poder-se-á sugerir que, em vez de estabelecer «0» e «número» e «sucessor» como termos cujos significados conhecemos, embora não os possamos definir, podemos deixar que representem três objectos quaisquer que satisfaçam os cinco axiomas de Peano. Não mais serão termos que têm um significado que seja determinado mas não definido: serão «variáveis», termos a respeito dos quais fazemos certas hipóteses, isto é, aquelas enunciadas nos cinco axiomas, mas que são, no restante, indeterminados. Se adoptarmos este plano, os nossos teoremas não serão demonstrados acerca de um determinado conjunto de objectos chamados «números naturais», mas relativamente a todos os conjuntos de objectos que tenham certas propriedades. Tal procedimento não é falacioso; na verdade representa, para certos propósitos, uma valiosa generalização.17 Mas, sob dois pontos de vista, falha em foram trazidas para o Ocidente durante o séc. XIX, estando uma no Victoria Embankment, em Londres, e outra no Central Park, em Nova Iorque.] 17 [É precisamente este tipo de generalização que caracteriza a concepção moderna do método axiomático, epitomizada pelos Fundamentos da Geometria de David Hilbert (1.ª edição, 1899; tradução portuguesa da 7.ª edição alemã, com todos os apêndices do Autor e suplementos de Paul Bernays,
I. A progressão dos números naturais

fornecer uma base adequada para a aritmética. Em primeiro lugar, não nos possibilita saber se existem quaisquer conjuntos de objectos que satisfaçam os axiomas de Peano; nem sequer dá a mais ténue sugestão sobre qualquer meio de descobrir se existem tais conjuntos. Em segundo lugar, queremos, como já observámos, que os nossos números sejam tais que nos permitam contar os objectos comuns, e isto exige que os nossos números tenham significado *definido*, não apenas que tenham certas propriedades formais. Este significado definido é estabelecido pela teoria lógica da aritmética.

CAPÍTULO II

Definição de número

A pergunta «Que é número?» tem sido feita com frequência, mas só foi correctamente respondida na nossa própria época. A resposta foi dada por Frege em 1884, no seu livro Die Grundlagen der Arithmetik. Embora este livro seja bem pequeno, não seja difícil, e seja da mais alta importância, quase não atraiu atenção alguma e a definição de número que contém permaneceu praticamente desconhecida até que foi redescoberta por este autor em 1901.

Ao buscarmos uma definição de número, a primeira coisa a esclarecer é aquilo que podemos chamar a gramática da nossa indagação. Muitos filósofos, ao tentarem definir número, dedicam-se, na realidade, ao trabalho de definir pluralidade, que é coisa muito diferente. Número é o que é característico dos números, como homem é o que é característico dos homens. Uma pluralidade não é um exemplo de número, mas de algum número determinado. Um trio de homens, por exemplo, é um exemplo do número 3, e o número 3 é um exemplo de número; mas o trio não é um exemplo de número. Este ponto poderá parecer elementar e dificilmente digno de ser mencionado; no entanto, provou ser excessivamente subtil para os filósofos, com poucas exceções.

Um determinado número não é idêntico a qualquer colecção que o contenha: o número 3 não é idêntico ao trio consistindo de Artur, Joel e Rui. O número 3 é algo que todos os trios têm em comum e que os distingue de outras colecções. Um número é algo que caracteriza certas colecções, isto é, aquelas que têm aquele número.

II. Definição de número

Em vez de falarmos de uma «colecção», falaremos, por regra, de uma «classe» ou, por vezes, de um «conjunto».19

As outras palavras usadas em matemática para designar essa mesma coisa são «agregado» e «multiplicidade». Teremos muito a dizer mais adiante sobre as classes. Diremos, de momento, o mínimo possível. Mas há algumas observações que têm de ser feitas imediatamente.

Uma classe ou colecção pode ser definida de duas maneiras, que, à primeira vista, parecem assaz diferentes. Podemos enumerar os seus elementos, como quando dizemos «A colecção a que me refiro é a de Artur, Joel e Rui». Ou podemos mencionar uma propriedade que a defina, como quando falamos de «humanidade» ou de «habitantes de Londres». A definição que enumera é chamada definição por «extensão» e a que menciona uma propriedade definidora é chamada definição por [«intensão» ou] «compreensão». Destes dois tipos de definição, o de compreensão é logicamente mais fundamental. Prova-se isto por duas considerações: (1) a de que a definição extensional pode ser sempre reduzida a uma definição compreensiva; (2) a de que a definição compreensiva frequentemente não pode, nem sequer teoricamente, ser reduzida a uma definição extensional. Cada um destes pontos exige umas palavras de explanação.

(1) Artur, Joel e Rui possuem, todos, uma certa propriedade que não é possuída por nada mais em todo o universo, nomeadamente, a de serem ou Artur, ou Joel ou Rui. Esta propriedade pode ser usada para dar uma definição por compreensão da classe que consiste de Artur e Joel e Rui. Considere-se a fórmula « é Artur ou é Joel ou é Rui». Esta fórmula só será satisfeita por três , isto é, Artur e Joel e Rui. A este respeito, assemelha-se a uma equação cúbica com as suas três raízes. Pode ser tomada como designando uma propriedade comum aos membros da classe que consiste destes três homens e

19 [Sinónimos, ao nível intuitivo ou ingénuo (da teoria ingénua dos conjuntos de Cantor), os termos «colecção», «classe» e «conjunto» não são sinónimos nas teorias axiomáticas dos conjuntos. Dos três termos, o primeiro é o mais geral e permanece ao nível intuitivo; o segundo significa normalmente a extensão de uma propriedade ou condição, e o terceiro simplesmente não se define, sendo, como é, um conceito primitivo daquelas axiomáticas. Observe-se que, nas teorias axiomáticas, todo o conjunto A é uma classe, nomeadamente, a classe de todos os objectos x tais que x pertence a A (em símbolos, A = { x : x ∈ A }), mas há classes que não são conjuntos como, por exemplo, a classe de todos os conjuntos, a classe de todos os ordinais, etc.]
peculiar a eles. Tratamento semelhante pode, obviamente, ser aplicado a qualquer outra classe definida por extensão.²⁰

(2) É óbvio que, na prática, podemos com frequência saber muito acerca de uma classe sem termos capazes de enumerar os seus membros. Nenhum homem poderia, de facto, enumerar todos os homens, ou mesmo todos os habitantes de Londres, no entanto sabe-se muito sobre cada uma destas classes. Isto é suficiente para mostrar que a definição por extensão não é necessária para conhecer uma classe. Mas quando consideramos as classes infinitas, constatamos que a enumeração não é sequer teoricamente possível para os seres humanos, que vivem apenas durante um tempo finito. Não podemos enumerar todos os números naturais: são eles 0, 1, 2, 3, e assim por diante. Em algum ponto teremos de contentar-nos com este «e assim por diante». Não podemos enumerar todas as frações ou todos os números irracionais, ou, na realidade, qualquer outra colecção infinita. Assim, o nosso conhecimento relativamente a todas estas colecções só pode ser obtido mediante uma definição por compreensão.

Estas observações são relevantes de três maneiras diferentes quando buscamos a definição de número. Em primeiro lugar, os números formam, eles próprios, uma colecção infinita, e não podem, portanto, ser definidos por enumeração [exaustiva]. Em segundo lugar, as colecções que tenham um determinado número de elementos formam, elas próprias, presumivelmente, uma colecção infinita: é de presumir, por exemplo, que exista uma colecção infinita de trios no universo, pois, se assim não fosse, o número total de coisas no universo seria finito, o que, embora possível, parece improvável.²² Em
II. Definição de número

terceiro lugar, desejamos definir «número» de maneira a possibilitar os números infinitos; assim, devemos poder falar do número de elementos de uma coleção infinita e tal coleção deverá ser definida por compreensão, isto é, por uma propriedade comum a todos os seus membros e a eles peculiar.

Para muitos propósitos, uma classe e uma característica que a defina são praticamente equivalentes. A diferença vital entre as duas consiste no facto de haver apenas uma classe com um dado conjunto de membros, enquanto há sempre muitas propriedades características diferentes pelas quais uma determinada classe pode ser definida. Os homens podem ser definidos como bipedes sem penas ou como animais racionais ou (mais correctamente) pelos traços pelos quais Swift concebeu os Yahoos. É este facto, de uma propriedade característica definidora nunca ser única, que torna as classes úteis; de outro modo, poderíamos contentar-nos com as propriedades comuns e peculiares aos seus membros. Qualquer uma destas propriedades pode ser usada no lugar da classe sempre que a singularidade não seja importante.

Voltando agora à definição de número: é claro que número é uma forma de reunir certas coleções, isto é, as que têm um dado número de elementos. Podemos imaginar todos os pares agrupados numa coleção, todos os trios noutra e assim por diante. Desta maneira obtemos vários agrupamentos de coleções, consistindo cada agrupamento de todas as coleções que têm um certo número de elementos. Cada agrupamento é uma classe cujos membros são colecções, isto é, classes; assim, cada agrupamento é uma classe de classes. O agrupamento que consiste de pares, por exemplo, é uma classe de classes: cada par é uma classe com dois membros e o agrupamento inteiro de pares é uma classe com um número infinito de membros, cada qual uma classe de dois membros.

(1882-1944) estimou em 1923 (Mathematical Theory of Relativity) que o número total de partículas do universo é da ordem de \(10^{20}\), que os cálculos modernos parecem confirmar no essencial.)

23 [Aqui e noutros locais mais adiante, Russell utiliza o vocábulo «homens» como sinónimo de «seres humanos». Em As Viagens de Gulliver, o escritor satírico irlandês Jonathan Swift (1667-1745) descreve uma raça de homens brutos e sujos chamados Yahoos.]

24 Conforme será explicado mais adiante, as classes podem ser consideradas ficções lógicas, meras elaborações das propriedades características que as definem. Entretanto, a nossa exposição ficará simplificada se as encararmos como se fossem coisas reais.
Como decidiremos sobre se duas coleções pertencem ao mesmo agrupamento? A resposta que se impõe é: «Determine quantos membros tem cada uma, colocando-as num mesmo agrupamento se tiverem o mesmo número de membros». Mas isto pressupõe que tenhamos definido os números e saibamos como descobrir quantos membros tem uma colecção. Estamos de tal forma acostumados com a operação de contar que tal pressuposição poderá facilmente passar despercebida. Contudo, a contagem, embora familiar, é de facto uma operação logicamente muito complexa; mais ainda, só se dispõe dela, como meio para descobrir quantos elementos tem uma colecção, quando esta é finita. A definição de número não deve admitir de antemão que todos os números sejam finitos; e não podemos, de qualquer modo, sem cair num círculo vicioso, usar a contagem para definir os números, porque estes são usados na contagem. Necessitamos, portanto, de algum outro método para decidir se duas coleções têm ou não o mesmo número de elementos.

Na realidade, é logicamente mais simples descobrir se duas coleções têm o mesmo número de elementos do que definir qual seja este número. Um exemplo esclarecerá este ponto. Se não houvesse poligamia e poliandria em parte alguma do mundo, é claro que o número de maridos vivos a qualquer momento seria exactamente igual ao número de esposas vivas. Não é necessário um recenseamento para nos assegurarmos disto, nem tão-pouco necessitamos saber o número real de maridos e esposas. Sabemos que o número deve ser igual em ambas as coleções, porque cada marido tem uma esposa e cada esposa tem um marido. Dizemos que a relação entre maridos e esposas é uma relação de «um-para-um».

Diz-se que uma relação é de «um-para-um» quando, se \(x \) tem essa relação com \(y \), nenhum outro \(x' \) tem a mesma relação com \(y \), e \(x \) não tem a mesma relação com qualquer elemento \(y' \) diferente de \(y \). Quando é satisfeita apenas a primeira destas condições, a relação é chamada «um-para-muitos»; quando preenchida apenas a segunda, é chamada «muitos-para-um».

25 Cabe observar que o número 1 não é usado nestas definições.

Nos países cristãos, a relação entre marido e esposa é de um-para-um; nos países maometanos, é de um-para-muitos; no Tibete, é de

25 [Uma relação um-para-um é um caso particular de uma relação um-para-muitos, e também um caso particular de uma relação muitos-para-um (ver nota 51, p. 57). Podemos exprimir que a relação \(R \) é de «um-para-muitos» por: \(\forall x \forall x' y(xRy \land x'Ry \rightarrow x = x') \); e que é de «muitos-para-um» por: \(\forall x \forall y y(xRy \land xRy' \rightarrow y = y') \).]
II. Definição de número

...muitos-para-um. A relação de pai para filho é de um-para-muitos; a de filho para pai é de muitos-para-um, mas a do filho mais velho para o pai é de um-para-um. Para números naturais n, a relação de n para $n+1$ é de um-para-um; também o é a relação de n para $2n$ ou para $3n$. Quando consideramos apenas números positivos, a relação de n para n^2 é de um-para-um; mas quando são admitidos números negativos, ela torna-se de dois-para-um, pois n e $-n$ têm o mesmo quadrado. Estes exemplos deverão bastar para esclarecer as noções de relação um-para-um, um-para-muitos e muitos-para-um, as quais desempenham importante papel nos princípios da matemática, não apenas no tocante à definição dos números como também sob muitos outros aspectos.

Dizemos que duas classes são «equipotentes» [ou «equinumerosas»] quando há uma relação de um-para-um que relaciona cada elemento de uma classe com um elemento da outra, da mesma forma como a relação de casamento relaciona os maridos com as esposas. Algumas definições preliminares ajudarão a enunciar mais precisamente esta definição. A classe dos elementos que têm uma determinada relação com algo é chamada o domínio daquela relação: assim, os pais são o domínio da relação de pai para filho, os maridos são o domínio da relação de marido para esposa, as esposas são o domínio da relação de esposa para marido e os maridos e esposas, juntos, são o domínio da relação de casamento. A relação de esposa para marido é chamada inversa da relação de marido para esposa. Da mesma forma, menor é o inverso de maior, mais tarde é o inverso de mais cedo e assim por diante. De modo geral, a inversa de uma determinada relação é a relação que existe entre y e x sempre que essa relação exista entre x e y. O domínio inverso de uma relação é o domínio da sua inversa; assim, a classe das esposas é o domínio inverso da relação de marido para esposa. Podemos agora enunciar assim a nossa definição de equipotência:

Uma classe diz-se «equipotente» a outra quando há uma relação de um-para-um da qual uma das classes é o domínio e a outra é o domínio inverso.

É fácil provar que: (1) toda a classe é equipotente a si mesma; (2) se uma classe α é equipotente a uma classe β, então β é equipotente a α; (3) se α é equipotente a β e β é equipotente a γ, então α é equipotente a γ. Uma relação diz-se reflexiva quando possui a primeira destas propriedades, simétrica quando possui a segunda e transitiva quando possui a terceira. É óbvio que uma relação que é simétrica e transitiva é reflexiva em todo o seu domínio. As relações que têm
estas três propriedades são de tipo importante, sendo de assinalar que a equipotência é uma relação deste tipo.26

É claro ao senso comum que duas classes finitas têm o mesmo número de elementos se são equipotentes, mas não noutros casos. O acto de contar consiste em estabelecer uma relação de um-para-um entre o conjunto de objectos contados e os números naturais (excluindo 0) usados no processo. Consequentemente, o senso comum conclui que há tantos objectos no conjunto a ser contado quantos são os números até ao último número usado na contagem. E também sabemos que, enquanto nos restringirmos aos números finitos, haverá exactamente n números de 1 a n. Segue que o último número usado na contagem de uma colecção é o número de elementos da colecção, desde que a colecção seja finita. Mas este resultado, além de ser somente aplicável a colecções finitas, pressupõe o facto de duas classes equipotentes terem o mesmo número de elementos, e dele depende; pois o que fazemos quando contamos (digamos) 10 objectos é mostrar que o conjunto destes objectos é equipotente ao conjunto dos números de 1 a 10. A noção de equipotência está logicamente pressuposta na operação de contar, sendo logicamente mais simples, embora menos familiar. Na contagem, é necessário tomar os objectos contados numa certa ordem, como primeiro, segundo, terceiro, etc., mas a ordem não é da essência do número: é um acréscimo irrelevante, uma complicação desnecessária do ponto de vista lógico. A noção de equipotência não exige uma ordem: vimos, por exemplo, que o número de maridos é o mesmo que o número de esposas, sem termos de estabelecer uma ordem de precedência entre eles. Também não exige que as classes equipotentes sejam finitas. Tomemos, por exemplo, os números naturais (excluindo 0), de um lado, e do outro, as fracções que têm 1 para numerador: é óbvio que podemos relacionar 2 com \(\frac{1}{2} \), 3 com \(\frac{1}{3} \) e assim por diante, provando, assim, que as duas classes são equipotentes.27

Podemos assim usar a noção de «equipotência» para decidir se duas colecções deverão pertencer ao mesmo agrupamento [classe de classes], no sentido em que levantámos esta questão mais atrás, neste capítulo. Queremos formar um agrupamento que contenha a classe que

26 [Tais relações são chamadas relações de equivalência.]
27 [O seguinte diagrama é elucidativo:

\[
\begin{array}{cccccccc}
1 & 2 & 3 & \cdots & n & \cdots \\
\uparrow & \uparrow & \uparrow & \cdots & \uparrow & \cdots \\
1/1 & 1/2 & 1/3 & \cdots & 1/n & \cdots \\
\end{array}
\]
II. Definição de número

não tem membro algum: será o agrupamento do número 0. Depois queremos um agrupamento com todas as classes que têm um membro: será para o número 1. A seguir, para o número 2, queremos um agrupamento consistindo de todos os pares; depois, um de todos os trios e assim por diante. Dada uma colecção qualquer, podemos definir o agrupamento ao qual ela deve pertencer como sendo a classe de todas as colecções «equipotentes» a ela. É muito fácil ver que se (por exemplo) uma colecção tem três membros, a classe de todas as colecções equipotentes a ela será a classe dos trios. E, seja qual for o número de elementos de uma colecção, as colecções que lhe sejam «equipotentes» terão o mesmo número de elementos. Podemos tomar esta observação como uma definição de «ter o mesmo número de elementos». É óbvio que esta definição dá resultados em conformidade com a prática, enquanto nos limitarmos a colecções finitas.

Até agora não sugerimos nada que seja minimamente paradoxal. Mas, quando chegamos à definição efectiva dos números, não podemos evitar o que deverá parecer, à primeira vista, um paradoxo, embora esta impressão cedo se desvaneça. Pensamos, naturalmente, que a classe dos pares (por exemplo) seja algo diferente do número . Mas não há dúvida alguma quanto à classe dos pares: é indubitável e não é difícil de definir, enquanto o número , em qualquer outro sentido, é uma entidade metafísica de cuja existência nunca podemos estar seguros e cuja pista nunca podemos estar seguros de ter perseguido. É, portanto, mais prudente contentar-nos com a classe dos pares, da qual estamos seguros, do que tentarmos caçar um problematico número que se mostrará sempre esquivo.

Consequentemente, estabelecemos esta definição:

O número de uma classe é a classe de todas as classes que lhe são equipotentes.

Assim, o número de um par será a classe de todos os pares. Na verdade, a classe de todos os pares será o número 2, de acordo com a nossa definição. Sem escapar a alguma excentricidade, esta definição garante precisão e certeza; e não é difícil demonstrar que os números assim definidos têm todas as propriedades que deles esperamos.

Podemos passar agora à definição dos números em geral como sendo qualquer um dos agrupamentos nos quais a equipotência colecciona classes. Um número será um conjunto de classes tais que quaisquer duas são equipotentes entre si e nenhuma fora do conjunto é equipotente a qualquer uma de dentro do conjunto. Por outras palavras, um número (em geral) é qualquer colecção que seja o número de um dos seus membros; ou, com simplicidade ainda maior:

Um número é qualquer coisa que seja o número de alguma classe.
Esta definição tem a aparência verbal de circularidade, mas na realidade não o é. Definimos «o número de uma determinada classe» sem usar a noção de número em geral; podemos, portanto, definir número em geral em termos do «número de uma determinada classe» sem cometer qualquer erro lógico.

As definições deste tipo são na verdade muito comuns. A classe dos pais, por exemplo, teria de ser definida definindo primeiro o que é ser o pai de alguém; a classe dos pais será, então, a de todos os que são pai de alguém. Da mesma forma, se queremos definir os números quadrados (digamos), temos primeiro de definir o que queremos dizer quando afirmamos que um número é o quadrado de outro, e, depois, definir os números quadrados como sendo aqueles que são os quadrados de outros números. Este tipo de procedimento é muito comum, e é importante reconhecer que é legítimo e até frequentemente necessário.

Apresentámos uma definição de número que servirá para as coleções finitas. Resta ver como poderá servir para as coleções infinitas. Mas temos primeiro de decidir o que queremos dizer por «finito» e «infinito», o que não pode ser feito nos limites deste capítulo.
A progressão dos números naturais pode ser inteiramente definida, como vimos no Cap. I, se soubermos o que queremos significar com os três termos «0», «número» e «sucessor». Mas podemos dar mais um passo: podemos definir os números naturais se soubermos o que queremos significar por «0» e «sucessor». Compreendermos a diferença entre finito e infinito será útil para vermos como isto pode ser feito e a razão pela qual o método utilizado não pode ser levado além do finito. Ainda não consideraremos como «0» e «sucessor» serão definidos: suporemos, por enquanto, que sabemos o que significam estes termos e mostraremos como todos os demais números naturais podem ser obtidos.

É fácil ver que podemos atingir qualquer número especificado, digamos, o número 30 000. Primeiro definimos «1» como «o sucessor de 0», depois definimos «2» como «o sucessor de 1» e assim por diante. No caso de um número especificado, tal como 30 000, a prova de que poderemos atingi-lo, procedendo passo a passo desta maneira, pode ser feita, se tivermos a paciência necessária, pela experiência real: podemos continuar até atingirmos realmente 30 000. Mas, embora o método experimental esteja disponível para cada número natural, dele não nos podemos valer para demonstrar a proposição geral de que todos tais números podem ser atingidos dessa maneira, isto é, prosseguindo a partir de 0, passo a passo, de cada número para o seu sucessor. Haverá algum outro modo pelo qual isto possa ser feito?

Consideremos a questão às avessas. Quais os números que podem ser atingidos se forem dados os termos «0» e «sucessor»? Haverá algum meio pelo qual possamos definir a classe de todos estes números? Atingimos 1 como sucessor de 0; 2, como sucessor de 1; 3, como sucessor de 2 e assim por diante. É este «e assim por diante» que desejamos substituir por algo menos vago e indefinido. Podemos ser tentados a dizer que «e assim por diante» significa que o processo de passar para o sucessor pode ser repetido qualquer número finito de vezes, mas o problema em cuja solução estamos empenhados
é o de definir «número finito», e, portanto, não devemos usar esta noção na definição. A definição não deverá pressupor que saibamos o que seja um número finito.

A chave para o nosso problema está na indução matemática. Recordemos que, no Cap. I, esta foi a quinta das cinco proposições primitivas que estabelecemos para os números naturais. Esta proposição declara que qualquer propriedade que pertença a 0, e também ao sucessor de todo número que tenha essa propriedade, pertence a todos os números naturais. Depois foi apresentada como um princípio, mas vamos adoptá-la agora como uma definição. Não é difícil ver que os objectos que a ela obedecem são os mesmos que os números que podem ser atingidos a partir de 0 por passos sucessivos de um número para o seguinte, mas, como a questão é importante, vamos considerá-la mais pormenorizadamente.

É conveniente começarmos com algumas definições, as quais também serão úteis noutros contextos.

Uma propriedade diz-se «hereditária» na progressão dos números naturais se, sempre que pertence a um número n, também pertence a $n + 1$, o sucessor de n. Da mesma forma, uma classe diz-se «hereditária» se, sempre que n é um membro dessa classe, $n + 1$ também é. É fácil constatar, embora ainda não se deva admitir que o saibamos, que dizer que uma propriedade é hereditária equivale a dizer que pertence a todos os números naturais que não sejam inferiores a algum número, por exemplo, deve pertencer a todos os que não sejam menores do que 100, ou a todos os que não sejam menores do que 1000, ou poderá ser que pertença a todos os que não sejam inferiores a 0, isto é, a todos, sem exceção.

Uma propriedade diz-se «indutiva» quando é uma propriedade hereditária que pertence a 0. Semelhantemente, uma classe é «indutiva» quando é uma classe hereditária que contém 0.

Dada uma classe hereditária que contenha 0, segue que ela contém 1, porque uma classe hereditária contém os sucessores dos seus membros e 1 é o sucessor de 0. De maneira análoga, dada uma classe hereditária de que 1 seja membro, segue que 2 é também membro e assim por diante. Podemos assim provar, por um processo gradual, que qualquer número, digamos 30 000, é um membro de toda a classe indutiva.

Definiremos a «posteridade» de um dado número natural com respeito à relação «predecessor imediato» (que é a inversa de «sucessor») como constituída por todos os elementos que pertencem

28 [Em rigor, devíamos dizer «sucessor imediato».]
III. Finitude e indução matemática

a toda a classe hereditária que contém o número dado. É novamente fácil constatar que a posteridade de um número natural consiste dele próprio e de todos os números naturais maiores do que ele; mas isto também ainda não sabemos oficialmente.

De acordo com as definições acima, a posteridade de 0 consistirá dos objetos que pertencem a toda a classe indutiva.

Agora não é difícil tornar óbvio que a posteridade de 0 é o mesmo conjunto que o dos elementos que podem ser atingidos a partir de 0 por passos sucessivos de um número para o seguinte. Pois, em primeiro lugar, 0 pertence a ambos estes conjuntos (no sentido em que definimos os nossos termos); em segundo lugar, se n pertence a ambos os conjuntos, o mesmo se dá no tocante a n + 1. Cabe observar que estamos aqui a tratar de um tipo de questão que não admite prova precisa, isto é, a comparação entre uma ideia relativamente vaga e outra relativamente precisa. A noção de «elementos que podem ser atingidos a partir de 0 por passos sucessivos de um número para o seguinte» é vaga, embora pareça transmitir um significado definido; por outro lado, a «posteridade de 0» só é precisa e explícita onde a outra é obscura. Poderá ser tomada como o que tencionávamos dizer quando falámos dos elementos que podem ser atingidos a partir de 0 por passos sucessivos.

Formulamos agora a seguinte definição:

Os «números naturais» são a posteridade de 0 com respeito à relação «predecessor imediato» (que é a inversa de «sucessor»).

Chegamos assim a uma definição das três ideias primitivas de Peano em termos das outras duas. Como resultado desta definição, duas das suas proposições primitivas — isto é, a que afirma que 0 é um número e a que sustenta a indução matemática — tornam-se desnecessárias, porquanto resultam da definição. A outra, a afirmar que o sucessor de um número natural é um número natural, é apenas necessária sob esta forma enfraquecida: «todo número natural tem um sucessor».

Podemos, naturalmente, definir com facilidade «0» e «sucessor» por meio da definição de número em geral a que chegámos no Cap. II. O número 0 é o número de elementos de uma classe que não tem membro algum, isto é, da classe que é chamada «classe nula [ou vazia]». De acordo com a definição geral de número, o número de elementos da classe vazia é o conjunto de todas as classes equipotentes à classe vazia, isto é (como é facilmente provável), o conjunto consistindo da classe vazia apenas, isto é, a classe cujo único membro é a classe vazia. (Esta não é idêntica à classe vazia: ela tem um membro, que é a classe vazia, enquanto a classe vazia em si não tem
membro algum. Uma classe que tem um membro nunca é idêntica a este membro, como explicaremos quando tratarmos da teoria das classes).

0 é a classe cujo único membro é a classe vazia.29

Resta definir «sucessor». Dado qualquer número \(n \), seja \(\alpha \) uma classe com \(n \) membros e seja \(x \) um objecto que não é membro de \(\alpha \). Então, a classe consistindo de \(\alpha \) com a adjunção de \(x \) terá \(n + 1 \) membros.30 Assim, temos a seguinte definição:

O sucessor do número de elementos da classe \(\alpha \), é o número de elementos da classe que consiste de \(\alpha \), juntamente com \(x \), em que \(x \) é qualquer elemento que não pertence à classe.

Certos refinamentos são precisos para que esta definição se torne perfeita, mas não devemos preocupar-nos com isto agora.31 Convém lembrar que já demos (no Cap. II) uma definição lógica do número de elementos de uma classe, ou seja, definimos esta noção como sendo o conjunto de todas as classes equipotentes à classe dada.

Reducimos assim as três noções primitivas de Peano a noções da lógica: demos definições que as tornam precisas, não mais capazes de uma infinidade de significados diferentes, como quando ainda eram determinadas apenas a menos da sujeição aos cinco axiomas de Peano. Retirámo-las do aparato inicial de termos que têm de ser meramente apreendidos, e aumentámos, assim, a articulação deductiva da matemática.

Quanto às cinco proposições fundamentais, já tivemos êxito em tornar duas delas demonstráveis mediante a nossa definição de «número natural». Que dizer no tocante às três restantes? É muito fácil provar que 0 não é sucessor de número algum e que o sucessor de qualquer número é um número. Mas há uma dificuldade relativamente à proposição primitiva restante, isto é, a de que «não há dois números com um mesmo sucessor». Esta dificuldade só surgirá se o número total de indivíduos do universo for finito; pois, sendo dados dois números \(m \) e \(n \), nenhum dos quais é o número total de indivíduos do universo, é fácil provar que não podemos ter a igualdade \(m + 1 =

29 [Se designarmos a classe vazia por \(\emptyset \), o número de elementos de \(\emptyset \) (que é zero) é a classe cujo único membro é \(\emptyset \), ou seja, a classe \(\{\emptyset\} \). Portanto, \(0 = \{\emptyset\} \). Na teoria axiomática dos conjuntos toma-se \(0 = \emptyset, 1 = \{\emptyset\} = \{0\}, 2 = \{\emptyset, \{\emptyset\}\} = \{0, 1\}, \text{etc.} \]

30 [A notação para esta classe é \(\alpha \cup \{x\} \). Só mais adiante Russell fala do problema de existência de um \(x \) que não pertence a \(\alpha \), para qualquer \(\alpha \) dada, quando discute a questão da infinitude da classe dos números.]

31 Ver Principia Mathematica, Vol. II. *110.
III. Finitude e indução matemática

$n + 1$, a não ser que m seja igual a n. Mas suponhamos que o número total de indivíduos do universo fosse (digamos) igual a 10; então, não haveria classe alguma de 11 indivíduos e o número 11 seria a classe vazia, assim como o seria o número 12. Desta forma teríamos $11 = 12$; portanto, o sucessor de 10 seria o mesmo que o sucessor de 11, embora 10 não fosse o mesmo que 11. Teríamos então dois números diferentes com um mesmo sucessor. Esta quebra do terceiro axioma não pode surgir, porém, se o número de indivíduos do universo não for finito. Voltaremos a este assunto mais adiante.

Se admitirmos que o número de indivíduos do universo não é finito, conseguiremos não apenas definir as três noções primitivas de Peano, mas também demonstrar as suas cinco proposições primitivas por meio de noções e proposições primitivas da lógica. Segue que toda a matemática pura, na medida em que seja derivável da teoria dos números naturais, é apenas um prolongamento da lógica. A extensão deste resultado aos ramos modernos da matemática que não são dedutíveis da teoria dos números naturais não oferece dificuldade alguma em princípio, como demonstramos noutro trabalho.32

O processo de indução matemática, por meio do qual definimos os números naturais, é passível de generalização. Definimos os números naturais como sendo a «posteridade» de 0 com respeito à relação entre um número e o seu sucessor imediato. Se designarmos esta relação por N, qualquer número m terá esta relação com $m + 1$. Uma propriedade é «hereditária com respeito a N», ou simplesmente «N-hereditária», se, sempre que pertence a um número m, também pertence a $m + 1$, isto é, ao número com o qual m tem a relação N. E dir-se-á que um número n pertence à «posteridade» de m com respeito à relação N se n tiver todas as propriedades N-hereditárias que pertencem a m. Estas definições podem ser todas aplicadas a qualquer outra relação no lugar de N. Assim, para qualquer relação R, podemos estabelecer as seguintes definições33:

32 No tocante à geometria, na parte que não é puramente analítica, ver Principles of Mathematics, parte VI; para a dinâmica racional, ibid.; parte VII.

33 Estas definições, bem como a teoria generalizada da indução, são de Frege e foram publicadas no remoto ano de 1879 no seu Begriffsschrift [Concept Script]. A despeito do grande valor deste trabalho, eu fui, creio, a primeira pessoa que o leu — mais de vinte anos após a sua publicação. [Parece, todavia, que outros lógicos o leram antes de Russell, como o alemão E. Schröder. Uma tradução em inglês deste primeiro e fundamental trabalho de Gotlob Frege, com o título “Begriffsschrift, a formula language, modeled
Uma propriedade diz-se «-hereditária» se, sempre que pertence a um elemento x e x está na relação R com y, pertence também a y.

Uma classe é R-hereditária quando a sua propriedade definidora é R-hereditária.

Diz-se que um elemento x é «R-ascendente» do elemento y se y tiver toda a propriedade R-hereditária que x tiver, desde que x seja um elemento que tenha a relação R com alguma coisa ou com o qual alguma coisa tenha a relação R. (Isto visa apenas a excluir os casos triviais).

A «R-posteridade» [ou «R-descendência»] de x é a classe de todos os elementos dos quais x é um R-ascendente.

Por mera conveniência, estruturámos as definições acima de forma que, se um elemento for o ascendente de alguma coisa, ele seja ascendente de si próprio e pertença à sua própria posteridade.

Cabe observar que, se adoptarmos para R a relação «um-dos-pais», «ascendente» e «posteridade» [ou «descendência»] terão os significados usuais, excepto que uma pessoa será incluída entre os seus ascendentes e entre a sua posteridade. É óbvio, de imediato, que «ascendente» deve ser capaz de definição em termos de «um-dos-pais», todavia, antes de Frege ter desenvolvido a sua teoria generalizada da indução, ninguém poderia ter definido «ascendente» precisamente em termos de «um-dos-pais». Uma breve consideração deste ponto servirá para mostrar a importância da teoria. Uma pessoa que se defrontasse pela primeira vez com o problema de definir «ascendente» em termos de «um-dos-pais» diria naturalmente que A será um ascendente de Z se houver, entre A e Z, um certo número de pessoas B, C, ..., onde B é filho de A, e cada uma é um-dos-pais da seguinte, até ao último, que é um dos pais de Z. Mas esta definição não é adequada, a menos que acrescentemos que o número de elementos intermédios tem de ser finito. Vejamos, por exemplo, uma cadeia como a seguinte:

$$-1, -\frac{1}{2}, -\frac{1}{4}, -\frac{1}{8}, \ldots, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1.$$

III. Finitude e indução matemática

De acordo com a definição de principiante acima sugerida, mas não o será segundo qualquer definição que dê o tipo de ideia que desejamos definir. Com este propósito, é essencial que o número de termos intermédios seja finito. Mas, como vimos, «finito» tem de ser definido por meio da indução matemática e é mais simples definir de uma vez por todas a relação de ascendência de modo geral do que defini-la primeiro para o caso da relação entre \(n \) e \(n + 1 \) e depois estendê-la a outros casos. Consta-se aqui, como amiúde noutras situações, que a generalidade a partir do início, embora exigindo mais esforço no começo, economizará o pensamento e aumentará o poder lógico a longo prazo.

O uso da indução matemática nas demonstrações teve, no passado, algo de misterioso. Não parecia haver dúvida razoável quanto à sua validade como método de prova, mas ninguém sabia bem por que razão era válido. Alguns acreditavam que fosse realmente um caso de indução, no sentido em que essa palavra é usada em lógica. Poincaré\(^{34}\) considerou-a um princípio da mais alta importância, por meio do qual um número infinito de silogismos podia ser condensado num só argumento. Sabemos hoje que todos estes pontos de vista eram errados e que a indução matemática é uma definição e não um princípio.\(^{35}\) Há alguns sistemas de números aos quais pode, e outros (como veremos no Cap. VIII) aos quais não pode ser aplicada. Definimos os «números naturais» como aqueles aos quais as provas por indução matemática podem ser aplicadas, isto é, aqueles que possuem todas as propriedades indutivas. Segue que tais provas podem ser aplicadas aos números naturais, não em virtude de qualquer intuição, axioma ou princípio misterioso, mas sim como uma proposição puramente verbal. Se os «quadrúpedes» são definidos como animais de quatro pés, seguir-se-á que os que têm quatro pés são quadrúpedes; e o caso dos números que satisfazem a indução matemática é exactamente análogo.

Usaremos a expressão «números indutivos» para designar o mesmo conjunto que vimos até agora chamando «números naturais». A expressão «números indutivos» é preferível por nos fazer relembrar que a definição deste conjunto de números é obtida através da indução matemática.

\(^{34}\) Science et Méthode (Paris, 1908), cap. IV.

\(^{35}\) [Esta observação não é correcta em absoluto. Em teorias formais (de 1.ª ordem) para a aritmética, importantes nos estudos metamatemáticos, a indução pode ser ou não postulada, dependendo do poder dedutivo pretendido e da finalidade dos estudos encetados.]
A indução matemática possibilita, mais do que qualquer outra coisa, a característica essencial pela qual o finito é distinguido do infinito. O princípio da indução matemática pode ser enunciado de forma popular mais ou menos do seguinte modo: «o que pode ser inferido do seguinte para o seguinte pode ser inferido do primeiro para o último». Isto é verídico quando o número de passos intermediários entre o primeiro e o último é finito e não no caso contrário. Quem tenha alguma vez observado um comboio de carga pôr-se em movimento terá notado que o impulso é comunicado com um solavanco de cada vagão ao vagão seguinte, até que finalmente o último vagão é posto em movimento. Quando a composição é muito grande, leva muito tempo para que o último vagão se mova. Se o comboio fosse infinitamente longo, haveria uma cadeia infinita de solavancos e nunca chegaria o momento em que toda a composição estaria em movimento. Não obstante, se houvesse uma cadeia de vagões que não fosse maior do que a cadeia dos números indutivos (a qual, como veremos, é um exemplo do mais pequeno dos infinitos), todo o vagão começaria a mover-se, mais cedo ou mais tarde, se a locomotiva perseverasse, a despeito do facto de que haveria sempre outros vagões mais atrás que ainda não teriam começado a mover-se. Esta imagem ajudará a elucidar o argumento do seguinte para o seguinte e a sua ligação com a finitude. Ao abordarmos os números infinitos, quando os argumentos de indução matemática não mais serão válidos, as propriedades de tais números ajudarão a esclarecer, por contraste, o uso quase inconsciente que é feito da indução matemática no que respeita aos números finitos.
CAPÍTULO IV

Definição de ordem

Já levámos a nossa análise da progressão dos números naturais ao ponto de obtermos definições lógicas dos membros desta progressão, da classe de todos os seus membros e da relação de um número com o seu sucessor imediato. Devemos agora considerar o carácter *serial* [ou *ordinal*] dos números naturais na ordem 0, 1, 2, 3,.... Pensamos normalmente nos números por esta *ordem*, e constitui parte essencial do trabalho de analisar os nossos dados buscar uma definição de «ordem» ou «progressão» em termos lógicos.

A noção de ordem tem uma importância enorme em matemática. Não apenas os inteiros, mas também os números racionais e os números reais possuem uma ordem de grandeza, e isto é essencial à maior parte das suas propriedades matemáticas. A ordem dos pontos numa linha é essencial à geometria; o mesmo se dá no tocante à ordem ligeiramente mais complicada das linhas [rectas] que passam por um ponto num plano ou dos planos que passam por uma linha [recta]. As dimensões são, em geometria, um desenvolvimento do conceito de ordem. O conceito de limite, que alicerça toda a matemática superior, é um conceito serial. Há partes da matemática que não dependem da noção da ordem, mas são pouquíssimas em comparação com as partes em que está envolvida esta noção.

Ao buscar uma definição de ordem, a primeira coisa a considerar é que nenhum conjunto de elementos tem apenas *uma* ordem com exclusão de todas as outras. Um conjunto de elementos tem todas as ordens de que é capaz. Por vezes uma ordem é tão familiar e natural aos nossos pensamentos que somos levados a considerá-la a *ordem* própria daquele conjunto de elementos; mas isto é um erro. Os números naturais — ou os números «indutivos», como também lhes chamaremos — aparecem-nos mais frequentemente pela sua ordem de grandeza; mas são capazes de uma infinidade de outros arranjos. Podemos, por exemplo, considerar primeiro todos os números ímpares e depois todos os números pares; ou primeiro 1 e depois todos os números pares, a seguir todos os múltiplos ímpares de 3, e então todos
os múltiplos de 5 mas não de 2 ou 3, e depois todos os múltiplos de 7 mas não os de 2 ou 3 ou 5, e assim por diante, através da progressão dos primos. Quando dizemos que «arranjarmos» os números nestas várias ordens, não estamos a ser muito precisos: o que fazemos na realidade é focar a nossa atenção em certas relações entre os números naturais, as quais geram, elas próprias, estes ou aqueles arranjos. É tão impossível «arranjarmos» os números quanto os céus estrelados; mas assim como podemos observar nas estrelas fixas a sua ordem de luminosidade ou a sua distribuição no firmamento, também podemos observar as várias relações entre os números, as quais dão origem a várias ordens diferentes entre eles, todas igualmente legítimas. E o que é verdadeiro para os números também o é relativamente aos pontos numa linha ou aos instantes de tempo: uma determinada ordem é mais familiar, mas outras são igualmente válidas. Podemos, por exemplo, considerar primeiro, sobre uma linha recta, todos os pontos que têm coordenadas inteiras, depois todos os que têm coordenadas racionais não inteiras, depois todos os que têm coordenadas algébricas não racionais e assim por diante, indo de complicação em complicação conforme nos aprouver. A ordem resultante será certamente uma das que os pontos de uma linha recta possuem, quer decidamos ou não torná-la em consideração; a única coisa que é arbitrária relativamente às várias ordens num conjunto de elementos é a nossa atenção a elas, pois os próprios elementos têm sempre todas as ordens de que são capazes.

Estas considerações têm como resultado importante o não devermos buscar a definição de ordem na natureza do conjunto de elementos a ser ordenado, porquanto um conjunto de elementos tem muitas ordens. A ordem não está na classe dos elementos, mas sim numa relação entre os membros da classe, segundo a qual alguns aparecem primeiro e outros depois. O facto de uma dada classe poder ter muitas ordens resulta de poder haver muitas relações entre os membros de cada classe dada. Que propriedades deve ter uma relação a fim de dar origem a uma ordem?

36 [Chamam-se algébricos os números complexos que são soluções de equações polinomiais com coeficientes inteiros. Por exemplo, \(\sqrt{2} \) é um número real algébrico, pois é solução da equação \(x^2 - 2 = 0 \); provou-se no séc. XIX que os números irracionais \(\pi \) e \(e \), entre outros, não são algébricos, sendo por isso chamados transcendentes.]

37 [Russell parece querer distinguir entre uma relação que dá origem a uma ordem e a ordem resultante propriamente dita, e a sua terminologia reflete esta distinção aparente. Será assim porque o conceito russelliano de relação é
As características essenciais para que uma relação dê origem a uma ordem podem ser descobertas considerando que, com respeito a tal relação, devemos poder dizer, para quaisquer dois elementos da classe a ser ordenada, que um «precede» e o outro «sucede». Ora, para que possamos usar estes termos da maneira que esperamos poder compreender-lhos naturalmente, torna-se necessário que a relação de ordenação tenha três propriedades:

1. Se x preceder y, y não deverá também preceder x. Esta é uma característica óbvia dos tipos de relação que levam às progressões. Se x é menor do que y, y não é menor do que x. Se x é anterior no tempo a y, y não deve ser também anterior no tempo a x. Se x está à esquerda de y, y não deverá estar à esquerda de x. Por outro lado, relações que não dão origem a progressões, frequentemente não têm esta propriedade. Se x é um irmão ou irmã de y, y é um irmão ou irmã de x. Se x é da mesma altura que y, y é da mesma altura que x. Se x é de altura diferente da de y, y é de altura diferente de x. Em todos estes casos, quando a relação existe entre x e y, existe também entre y e x. Mas tal coisa não pode acontecer no tocante às relações seriais. Uma relação que tenha esta primeira propriedade é chamada assimétrica.

2. Se x precede y e y precede z, x deve preceder z. Esta característica pode ser ilustrada com os mesmos exemplos anteriores: menor, anterior, à esquerda de. Mas somente dois dos nossos três exemplos anteriores servirão para as relações que não têm esta propriedade. Se x é irmão ou irmã de y e y é de z, x poderá não ser irmão ou irmã de z, porquanto x e z poderão ser a mesma pessoa. O mesmo se aplica às diferenças de altura, mas não à igualdade de alturas, que tem a nossa segunda propriedade, mas não a primeira. A relação «pai», por outro lado, tem a nossa primeira propriedade mas não a segunda. Uma relação que tenha a nossa segunda propriedade é chamada transitiva.

3. Dados quaisquer dois elementos da classe a ser ordenada, deve haver um que precede e outro que sucede. Por exemplo, de dois inteiros ou frações ou números reais quaisquer [diferentes], um é menor e o outro é maior; mas o mesmo não se verifica no tocante a dois números complexos. De dois instantes de tempo quaisquer, um deve ser anterior ao outro; mas o mesmo não pode ser dito de dois acontecimentos, porquanto podem ser simultâneos. De dois pontos

intensional, enquanto na moderna teoria dos conjuntos, onde impera a extensionalidade, a ordem é a própria relação com as propriedades convenientes.]
numa linha [recta], um deve estar à esquerda do outro. Uma relação que tenha esta terceira propriedade chama-se conexa.\(^\text{38}\)

Quando uma relação possui estas três propriedades, é do tipo que dá origem a uma ordem entre os elementos nos quais tem lugar; e, sempre que existe uma ordem, pode ser encontrada como sua geradora uma relação com estas três propriedades.

Apresentaremos algumas definições antes de ilustrar esta tese:

2. A relação quadrada de uma relação é a relação que existe entre dois elementos \(x\) e \(z\) quando há um elemento intermediário \(y\) tal que a relação dada existe entre \(x\) e \(y\) e entre \(y\) e \(z\).\(^\text{40}\) Assim, «avô paterno» é a quadrada de «pai», «dois pontos maior» é a quadrada de «um ponto maior» e assim por diante.

3. O domínio de uma relação consiste de todos os elementos que têm essa relação com alguma coisa, e o domínio inverso consiste de todos os elementos com os quais algo tem essa relação. Estas expressões já foram definidas, mas são aqui relembradas a bem da seguinte definição:

4. O campo de uma relação consiste do seu domínio e do seu domínio inverso, reunidos.\(^\text{41}\)

\(^{38}\) As três propriedades podem ser simbolizadas do seguinte modo:

1. \(\forall xy(x R y \rightarrow y R x)\);
2. \(\forall xyz(x R y \land y R z \rightarrow x R z)\);
3. \(\forall xy(y R x \lor x R y)\).

\(^{39}\) O autor utiliza aqui o termo «aliorelative», que atribui a C. S. Peirce, numa nota de rodapé. Se escrevermos \(R \subseteq S\) para exprimir que a relação \(R\) está contida em ou implica a relação \(S\), então dizer que \(R\) é irreflexiva, está contida em ou implica diversidade pode-se exprimir simbolicamente por \(R \subseteq D\), onde \(D\) é a relação de diversidade: um objecto \(x\) está na relação \(D\) com \(y\) se e só se \(x \neq y\).

\(^{40}\) A relação quadrada de uma relação \(R\) também é chamada a composta de \(R\) consigo mesma e designada por \(R \circ R\), abreviadamente \(R^2\). Em geral a relação composta de \(R\) com \(S\), ou \(S\) após \(R\), é a relação que se designa por \(S \circ R\) e que existe entre \(x\) e \(z\) quando e só quando existe um \(y\) tal que \(x R y\) e \(y S z\).

\(^{41}\) A reunião de duas classes \(\alpha\) e \(\beta\) é a classe \(\alpha \cup \beta\) cujos elementos estão em \(\alpha\) ou em \(\beta\). A reunião de duas relações \(R\) e \(S\) é a relação \(R \cup S\) constituída por todos os pares ordenados de objectos que estão numa ou
IV. Definição de ordem

(5) Diz-se que uma relação contém ou é implicada por outra quando ela é satisfeita sempre que a outra é satisfeita.

Pode-se ver que uma relação assimétrica é o mesmo que uma relação cuja quadrada é irreflexiva. Acontece frequentemente que uma relação é irreflexiva sem ser assimétrica, embora uma relação assimétrica seja sempre irreflexiva. Por exemplo, «cônjuges» é irreflexiva, mas simétrica, porquanto se \(x \) é cônjuge de \(y \), \(y \) é cônjuge de \(x \). Mas entre as relações transitivas, todas as irreflexivas são assimétricas, e vice-versa.

Pode-se ver das definições que uma relação transitiva é uma relação que é implicada pela sua quadrada, ou, como também se pode dizer, «contém» a sua quadrada. Assim, «ascendente» é transitiva, porque o ascendente de um ascendente é um ascendente; mas «pai» não é transitiva, porque o pai de um pai não é um pai. Uma relação irreflexiva transitiva é uma relação que contém a sua quadrada e é irreflexiva; ou, o que vem a dar no mesmo, uma relação cuja quadrada implica tanto ela quanto a diversidade — porque, quando uma relação é transitiva, assimetria equivale a irreflexividade.

Uma relação é conexa quando, dados quaisquer dois elementos diferentes do seu campo, a relação existe entre o primeiro e o segundo ou entre o segundo e o primeiro (não excluindo a possibilidade de que as duas coisas possam acontecer, embora isto não se possa dar quando a relação é assimétrica).

Pode-se ver que a relação «ascendente», por exemplo, é irreflexiva e transitiva, mas não conexa; é por não ser conexa que ela não permite dispor a espécie humana numa progressão.

A relação «menor do que ou igual a» [símbolo: \(\leq \)], entre números, é transitiva e conexa, mas não assimétrica ou irreflexiva.

A relação «maior ou menor» entre números, é irreflexiva e conexa mas não é transitiva, porque se \(x \) é maior ou menor do que \(y \), e \(y \) é maior ou menor do que \(z \), poderá acontecer que \(x \) e \(z \) sejam o mesmo número.

noutra das relações, se identificarmos uma relação com a classe dos pares ordenados que estão na relação: o par ordenado \((x, y)\) está na relação \(R\) se e só se \(x\mathbin{R}y\). Assim, tem-se \(x(R \cup S)y\) se e só se \(x\mathbin{R}y\) ou \(x\mathbin{S}y\). Antigamente chamava-se soma lógica, ou simplesmente soma tanto à operação de união de classes e de relações como à operação lógica de disjunção («ou»). No caso de as relações serem encaradas intensionalmente, é preferível o termo «disjunção» para a relação \(x\mathbin{R}y\) ou \(x\mathbin{S}y\), e a notação \(R \lor S\).]

42 Ver Nota 39, pág. 44.
Assim, as três propriedades (1) irreflexiva, (2) transitiva e (3) conexa são mutuamente independentes, porquanto uma relação pode ter duas quaisquer sem possuir a terceira.

Estabelecemos agora a seguinte definição:

Uma relação é *serial* quando é irreflexiva, transitiva e conexa; ou, o que é equivalente, quando é assimétrica, transitiva e conexa.

Uma *cadeia* é a mesma coisa que uma relação serial.\(^{43}\)

Poder-se-ia ter pensado que uma cadeia é o campo de uma relação serial e não a relação serial em si mesma. Mas isto seria um erro. Por exemplo,

\[
1, 2, 3; \quad 1, 3, 2; \quad 2, 3, 1; \quad 2, 1, 3; \quad 3, 1, 2; \quad 3, 2, 1
\]

são seis cadeias diferentes que têm, todas, o mesmo campo. Se o campo fosse a cadeia, só poderia haver uma cadeia com um determinado campo. O que distingue as seis cadeias acima é simplesmente a relação ordenadora nos seis casos. Dada a relação ordenadora, o campo e a ordem são ambos determinados. Assim, pode-se tomar a cadeia como sendo a relação de ordenação, mas o mesmo não se pode fazer com o campo.

Dada qualquer relação serial, digamos \(P\), diremos que, com respeito a esta relação, \(x\) «precede» \(y\) se \(x\) tem a relação \(P\) com \(y\), condição que escreveremos \(xPy\), para simplificar. São as seguintes as características que deve ter para ser serial:

1. **Irreflexividade:** Nunca devemos ter \(xPx\), isto é, nenhum elemento deve preceder ele mesmo;
2. **Transitividade:** \(P^2\) deve implicar \(P\), isto é, se \(x\) precede \(y\) e \(y\) precede \(z\), \(x\) deve preceder \(z\);
3. **Conexidade:** Se \(x\) e \(y\) são dois elementos diferentes do campo de \(P\), devemos ter \(xPy\) ou \(yPx\), isto é, um dos dois deve preceder o outro.

O leitor poderá facilmente convencer-se de que, quando estas três propriedades forem encontradas numa relação ordenadora, as características que esperamos de uma cadeia também o serão e vice-versa. Justifica-se, portanto, tomarmos estas propriedades para definição de ordem ou cadeia. E cabe observar que a definição é efectuada em termos puramente lógicos.

Embora exista uma relação transitiva assimétrica conexa sempre que haja uma cadeia, nem sempre uma tal relação seria mais naturalmente considerada como geradora da cadeia. A cadeia dos números naturais pode servir de ilustração. A relação que admitimos ao consi-

\(^{43}\) [V. Nota 7, pág. 14.]
derar os números naturais foi a de sucessão imediata, isto é, a relação entre inteiros consecutivos. Esta relação é assimétrica mas não transitiva nem conexa. Podemos, portanto, deduzir dela, pelo método da indução matemática, a relação «ascendente» que consideraremos no capítulo anterior. Esta relação será a mesma que a de «menor do que ou igual a» entre os inteiros indutivos. Com o propósito de gerar a cadeia dos números naturais, queremos a relação «menor do que» \([<]\), excluindo «igual a». Esta é a relação de \(m\) para \(n\) quando \(m\) é um ascendente de \(n\) mas não é idêntico a \(n\), ou (o que vem a ser a mesma coisa), quando o sucessor de \(m\) é um ascendente de \(n\) no sentido em que um número é ascendente de si próprio. Quer dizer, devemos estabelecer a seguinte definição:

Diz-se que um número indutivo \(m\) é menor do que outro número \(n\) quando \(n\) possui todas as propriedades hereditárias possuídas pelo sucessor de \(m\).

É fácil ver, e não é difícil demonstrar, que a relação «menor do que», assim definida, é assimétrica, transitiva e conexa e tem para seu campo os números indutivos. Assim, os números indutivos adquirem, por meio desta relação, uma ordem no sentido em que definimos o termo «ordem», e esta ordem é a chamada ordem «natural» ou ordem por grandeza.

A geração de cadeias por meio de relações mais ou menos semelhantes à que existe entre \(n\) e \(n + 1\) é muito comum. A cadeia dos Reis da Inglaterra, por exemplo, é gerada por relações de cada um com o seu sucessor. Esta é, provavelmente, a maneira mais fácil, quando aplicável, de conceber a geração de uma cadeia. Neste método, passamos de cada elemento para o seguinte, enquanto houver um seguinte, ou regredimos para o anterior, enquanto houver um anterior. Este método exige sempre a forma generalizada da indução matemática para nos permitir definir «anterior» e «posterior» numa cadeia assim gerada. Quanto à analogia das frações próprias daremos o nome de «posteridade própria de \(x\) com respeito a \(R\)» à classe dos elementos que pertencem à \(R\)-posteridade de algum elemento com o qual \(x\) tem a relação \(R\), no sentido que demos antes a «posteridade», que inclui cada elemento na sua posteridade. Voltando às definições fundamentais, constatamos que a «posteridade própria» pode ser assim definida:

A «posteridade própria» de \(x\) com respeito a \(R\) consiste de todos os elementos que possuem todas as propriedades \(R\)-hereditárias possuídas por todos os elementos com os quais \(x\) tem a relação \(R\).

Cabe observar que esta definição tem de ser assim estruturada para que possa ser aplicável não apenas quando exista apenas um elemento
Introdução à Filosofia Matemática

com o qual \(x \) tenha a relação \(R \), mas também nos casos (como, por exemplo, o de pai e filho) nos quais pode haver muitos elementos com os quais \(x \) tenha a relação \(R \). Definimos ainda:

Um elemento \(x \) é um «ascendente próprio» de \(y \) com respeito a \(R \) se \(y \) pertence à posteridade própria de \(x \) com respeito a \(R \).

Empregaremos, para abreviar, «\(R \)-posteridade» e «\(R \)-ascendente» quando estas formas pareçam mais convenientes.

Revertendo agora à geração de cadeias pela relação \(R \) entre elementos consecutivos, vemos que, para que este método seja possível, a relação «\(R \)-ascendente próprio» deve ser irreflexiva, transitiva e conexa. Sob que circunstâncias ocorrerá isto? Ela será sempre transitiva: seja qual for o tipo da relação \(R \), «\(R \)-ascendente» e «\(R \)-ascendente próprio» serão sempre, ambas, transitivas. Mas somente sob certas circunstâncias será irreflexiva e conexa. Considere-se, por exemplo, a relação com o vizinho da esquerda, ao redor da mesa num jantar em que participem doze pessoas. Se chamarmos esta relação \(R \), a \(R \)-posteridade própria de uma pessoa consiste de todos os que podem ser atingidos pelo deslocamento em torno da mesa, da direita para a esquerda. Ficam incluídos todos os que se encontram à mesa, inclusive a própria pessoa que serviu de ponto inicial, porquanto doze passos trazem-nos de volta ao ponto de partida. Assim, neste caso, embora a relação «\(R \)-ascendente próprio» seja conexa e a própria \(R \) seja irreflexiva, não obtemos uma cadeia, porque «\(R \)-ascendente próprio» não é irreflexiva. É por esta razão que não podemos dizer que uma pessoa está antes da outra com respeito à relação «à direita de» ou à sua ascendência.

O caso acima é um exemplo em que a relação de ascendência é conexa mas não irreflexiva. Um exemplo em que ela é irreflexiva mas não conexa é derivado do sentido ordinário da palavra «ascendente». Se \(x \) é um ascendente próprio de \(y \), \(x \) e \(y \) não podem ser a mesma pessoa; mas não é verdadeiro que, de duas pessoas, uma deva ser um ascendente da outra.

A questão das circunstâncias sob as quais as cadeias podem ser geradas por relações de ascendência derivadas de relações de consecutividade é frequentemente importante. Eis alguns dos casos mais importantes, onde admitimos que \(R \) é uma relação de muitos-para-um, e limitemos a nossa atenção à posteridade de algum elemento \(x \). Quando assim limitada, a relação «\(R \)-ascendente próprio» deve ser conexa; portanto, tudo o que falta garantir para que seja serial é que seja irreflexiva. Trata-se de uma generalização do exemplo da mesa de jantar. Outra generalização consiste em fazer que \(R \) seja uma relação de um-para-um, incluindo tanto a ascendência como a posteridade de
x. Aqui, novamente, a única condição exigida para garantir a geração de uma cadeia é que a relação «R-ascendente próprio» seja irreflexiva.

A geração de ordens por meio de relações de consecutividade, embora importante no seu âmbito próprio, é menos geral do que o método que usa uma relação transitiva para definir a ordem. Acontece frequentemente haver numa cadeia uma infinidade de elementos intermédios entre dois quaisquer que possam ser escolhidos, por mais próximos que estejam entre si. Veja-se, por exemplo, as fracções [números racionais] por ordem de grandeza. Entre duas fracções quaisquer há outras — por exemplo, a média aritmética das duas. Consequentemente, não há um par de fracções consecutivas. Se a definição de ordem dependesse da consecutividade, estariamos impossibilitados de definir a ordem de grandeza entre fracções. Mas na verdade as relações de maior e menor, entre fracções, não exigem geração de relações de consecutividade, e as relações de maior e menor entre fracções têm as três características de que necessitamos para definir as relações seriais. Em todos estes casos a ordem deve ser definida por meio de uma relação transitiva, pois somente estas relações são capazes de saltar por cima de uma infinidade de elementos intermédios. O método da consecutividade, como o da contagem para a determinação do número de uma coleção, é apropriado ao finito; pode ser até estendido a certas cadeias infinitas, isto é, aquelas em que, embora o número total de elementos seja infinito, o número de elementos entre quaisquer dois é sempre finito; mas este facto não deve ser considerado geral. Além disso, deve-se tomar cuidado para erradicar da mente todos os hábitos de pensamento resultantes da suposição de que seja geral. Se isto não for feito, as cadeias nas quais não há elementos consecutivos permanecerão difíceis e embaraçosas. E tais cadeias são de importância vital para a compreensão da continuidade, do espaço, do tempo e do movimento.

Há várias maneiras pelas quais as cadeias podem ser geradas, mas todas dependem do encontro ou da construção de uma relação assimétrica, transitiva e conexta. Algumas destas maneiras têm importância considerável. Podemos tomar como exemplo a geração de cadeias por meio de uma relação de três elementos que podemos chamar relação tipo «estar entre». Este método é muito útil em geometria e pode servir como uma introdução às relações que se aplicam a mais de dois elementos; a melhor maneira de a introduzir é em ligação com a geometria elementar.

Dados três pontos quaisquer sobre uma recta no espaço ordinário, um deles deve estar entre os outros dois. Isto não acontecerá com os pontos sobre uma circunferência ou sobre qualquer outra curva.
fechada, porque, dados três pontos quaisquer sobre uma circunferência, podemos deslocar-nos de qualquer um deles para qualquer outro sem passar pelo terceiro. Na verdade, a noção «entre» é característica das cadeias abertas, — ou cadeias no sentido estrito —, em contraste com o que se pode chamar cadeias «cíclicas», nas quais, como no caso das pessoas em torno de uma mesa de jantar, uma caminhada suficiente traz-nos de volta ao nosso ponto de partida.

Esta noção de «entre» pode ser escolhida como noção primitiva da geometria ordinária; mas no momento consideraremos apenas a sua aplicação a uma única linha recta e à ordenação dos pontos sobre uma linha recta. Tomando dois pontos quaisquer a, b, a linha recta (ab) consiste de três partes (além dos próprios a e b):

1. Pontos entre a e b;
2. Pontos x tais que a está entre x e b;
3. Pontos y tais que b está entre y e a.

A recta (ab) pode, assim, ser definida em termos da relação «entre».

Para que esta relação «entre» possa dispor os pontos da linha numa ordem da esquerda para a direita, necessitamos de certas suposições, nomeadamente:

1. Se algo está entre a e b, a e b não são idênticos;
2. Algo que esteja entre a e b está também entre b e a;
3. Algo que esteja entre a e b não é idêntico a a (nem, consequentemente, a b, em virtude de (2));
4. Se x está entre a e b, algo que esteja entre a e x está também entre a e b;
5. Se x está entre a e b e b está entre x e y, então b está entre a e y;
6. Se x e y estão entre a e b, então, ou x e y são idênticos ou x está entre a e y ou y está entre x e b;

45 [Escrevendo x-y-z para exprimir que y está entre x e z, tem-se (ab) = \{a, b\} \cup \{x : x-a-b\} \cup \{x : a-x-b\} \cup \{x : a-b-x\}.]
(7) Se b está entre a e x e também entre a e y, então, ou x e y são idênticos ou x está entre b e y ou y está entre b e x.

Estas sete propriedades são obviamente satisfeitas no caso dos pontos sobre uma linha recta no espaço ordinário. Qualquer relação ternária que as satisfaça dá origem a uma cadeia, como pode ser visto nas definições que se seguem. Para fixar ideias, suponhamos que a está à esquerda de b. Então, os pontos da linha (ab) são (1) aqueles tais que a está entre eles e b, — diremos que estão à esquerda de a; (2) o próprio a; (3) os que estão entre a e b; (4) o próprio b; (5) aqueles tais que b está entre eles e a — diremos que estão à direita de b.

Podemos agora explicar de modo geral que, de dois pontos x e y, sobre a linha (ab), diremos que x está «à esquerda de» y em qualquer dos seguintes casos:

1. Quando x e y estão ambos à esquerda de a, e y está entre x e a;
2. Quando x está à esquerda de a, e y é a ou b ou está entre a e b ou à direita de b;
3. Quando x está entre a e b ou é b ou está à direita de b;
4. Quando x está entre a e b, x e y está entre x e b;
5. Quando x está entre a e b, e y é b ou está à direita de b;
6. Quando x e b, e y está à direita de b;
7. Quando x e y estão ambos à direita de b, e x está entre b e y.

Constatar-se-á que, das sete propriedades que atribuímos à relação «entre», se pode deduzir que a relação «à esquerda de», conforme acima definida, é uma relação serial no sentido em que este termo foi definido. É importante observar que nada nas definições ou no argumento depende da circunstância de querermos ou não entender por «entre» a relação real com aquele nome no espaço físico ordinário: qualquer relação ternária com as sete propriedades puramente formais acima servirá de igual maneira ao propósito do argumento.

As ordens cíclicas, tal como a dos pontos numa circunferência, não podem ser geradas por meio de relações ternárias do tipo «entre». Necessitamos de uma relação quaternária, que poderá ser chamada «separação de pares». Este ponto pode ser ilustrado por uma viagem à volta do mundo. Pode-se ir da Inglaterra à Nova Zelândia via Canal do Suez ou passando primeiro por São Francisco; não podemos dizer definitivamente que qualquer destes dois lugares esteja «entre» a Inglaterra e a Nova Zelândia. Mas se um homem escolher esta rota para fazer a volta ao mundo, seja qual for o sentido que escolher os seus tempos nas passagens por Inglaterra e Nova Zelândia estão separados entre si pelos seus tempos de passagem no Suez e em São Francisco, e vice-versa. Generalizando, se tomarmos quatro pontos quaisquer sobre uma circunferência, podemos separá-los em dois
Introdução à Filosofia Matemática

pares, digamos a e b e x e y, tais que, a fim de passar de a para b tenhamos de passar por x ou por y e a fim de passar de x para y tenhamos de passar por a ou por b. Nestas circunstâncias dizemos que o par [ordenado] (a, b) está «separado» pelo par (x, y). Desta relação pode ser gerada uma ordem cíclica, de uma forma análoga à que gerámos uma ordem aberta a partir de «entre», porém algo mais complicada.46

O objectivo da segunda metade deste capítulo foi sugerir o assunto que se poderia chamar «geração de relações seriais». Uma vez definidas estas relações, a geração delas a partir de outras relações possuindo apenas algumas das propriedades exigidas para as cadeias torna-se muito importante, especialmente na filosofia da geometria e da física. Mas não podemos, nos limites deste volume, fazer mais do que alertar o leitor para a existência deste assunto.

46 Ver Principles of Mathematics, p. 205 (§194) e referências aí contidas.
CAPÍTULO V

Variedades de relações

Uma grande parte da filosofia da matemática diz respeito a relações, e muitos tipos diferentes de relações têm diferentes utilizações. Acontece frequentemente que uma propriedade que pertence a todas as relações só é importante no tocante a relações de certos tipos; nestes casos o leitor não verá a aplicação da proposição que afirma tal propriedade, a menos que tenha em mente os tipos de relações para as quais ela seja útil. Por motivo desta descrição, bem como por causa do interesse intrínseco do assunto, é bom termos em mente uma breve lista das variedades de relações matematicamente mais úteis.

Tratámos, no capítulo anterior, de uma categoria sumamente importante de relações, nomeadamente, das relações serials. Cada uma das três propriedades que congregámos para definir as cadeias — isto é, assimetria, transitividade e conexidade —, tem a sua importância. Começaremos por dizer algo sobre cada uma delas.

A assimetria, isto é, a propriedade de ser incompatível com a inversa, é uma característica do mais alto interesse e importância. A fim de desenvolver as suas funções, consideraremos vários exemplos. A relação marido é assimétrica, bem como a relação esposa; isto é, se a é marido de b, b não pode ser marido de a, e analogamente no tocante a esposa. Por outro lado, a relação «cônjugue» é simétrica: se a é cônjugue de b, então b é cônjugue de a. Suponhamos agora que nos é dada a relação cônjugue e desejamos derivar a relação marido. Marido é o mesmo que cônjugue macho ou cônjugue de uma fêmea; assim, a relação marido pode ser derivada da de cônjugue pela limitação ao domínio dos machos ou pela limitação da relação inversa às fêmeas. Vemos deste exemplo que, quando é dada uma relação simétrica, é por vezes possível, sem a ajuda de qualquer outra relação, separá-la em duas relações assimétricas. Mas os casos em que isto é possível são raros e excepcionais: são casos em que há duas classes mutuamente exclusivas, digamos α e β, tais que, quando a relação existe entre dois elementos, um dos elementos é membro de α e o outro é membro de β — como, no caso de cônjugue, um elemento da relação pertence a
classe dos machos e o outro à classe das fêmeas. Em tal caso, a relação com o seu domínio limitado a \(\alpha \) será assimétrica, e analogamente para a relação com domínio limitado a \(\beta \). Mas estes casos não ocorrem quando tratamos de cadeias de mais de dois elementos; porque numa cadeia, todos os elementos, excepto o primeiro e o último (se existem), pertencem tanto ao domínio como ao domínio inverso da relação geradora, de modo que uma relação como a de marido, na qual o domínio e o domínio inverso não se sobrepõem, está excluída.

Tem considerável importância a questão de como construir relações que possuam certa propriedade útil, por meio de operações com relações que apenas possuem rudimentos daquela propriedade. A transitividade e a conexidade são facilmente construídas em muitos casos nos quais as relações originalmente dadas não possuem aquelas propriedades: por exemplo, se \(R \) é uma relação qualquer, a relação de ascendência derivada de \(R \) por indução generalizada é transitiva; e se \(R \) é uma relação de muitos-para-um, a relação de ascendência será conexa se limitada à posteridade de um elemento dado. Mas a assimetria é uma propriedade muito mais difícil de garantir por construção. O método pelo qual derivamos marido de cônjuge não está, como vimos, disponível nos casos mais importantes, tais como maior, anterior e à direita de, nos quais o domínio e o domínio inverso se sobrepõem. Em todos estes casos, podemos, é claro, obter uma relação simétrica fazendo a reunião da relação dada com a sua inversa, mas não podemos regressar desta relação simétrica para a relação assimétrica original, excepto com a ajuda de alguma relação assimétrica. Tome-se, por exemplo, a relação \(\) a relação maior ou menor — isto é, desigual — é simétrica, mas nada há nesta relação a mostrar que ela seja a reunião de duas relações assimétricas. Tome-se uma relação como a de «diferente na forma». Não se trata da reunião de uma relação assimétrica com a sua inversa, porquanto as formas não formam uma única cadeia; mas não há nada que mostre que ela difere de «diferente em grandeza» se não soubéssemos já que as grandezas têm relações de maior ou menor. Isto ilustra o carácter fundamental da assimetria como uma propriedade das relações.

Do ponto de vista da classificação das relações, ser assimétrica é uma característica muito mais importante do que ser irreflexiva. As relações assimétricas são irreflexivas, mas a reciproca não é verdadeira. «Desigual», por exemplo, é irreflexiva, mas é simétrica.47 De um modo geral, podemos dizer que, se quisermos dispensar o máximo possível as proposições relacionais, substituindo-as pelas predicativas

47 [A simetria de uma relação \(R \) exprime-se por \(\forall xy (xRy \to yRx) \).]
V. Tipos de relações

[do tipo sujeito-predicado], poderíamos fazê-lo desde que nos limitássemos às relações simétricas: aquelas que não são irreflexivas podem, se transitivas, ser consideradas como afirmando um predicado comum, enquanto as que são irreflexivas podem ser consideradas como afirmando predicados incompatíveis. Considere-se, por exemplo, a relação de equipotência entre classes, por meio da qual definimos os números. Esta relação é simétrica e transitiva mas não é irreflexiva. Seria possível, embora menos simples do que o procedimento que adoptámos, considerar o número de uma coleção como um predicado da coleção: então, classes equipotentes seriam classes com o mesmo predicado numérico, enquanto classes não equipotentes seriam classes com predicados numéricos diferentes. Este método de substituir relações por predicados é formalmente possível (embora com frequência muito inconveniente) mas somente quando as relações são simétricas; mas é formalmente impossível quando elas são assimétricas, porque tanto a igualdade como a diferença de predicados são simétricas. Podemos, assim, dizer que as relações assimétricas são as relações mais caracteristicamente relacionais e as mais importantes para o filósofo que deseje estudar a natureza lógica última das relações.

Outra classe de relações de maior utilização é a das relações de um-para-muitos, isto é, as relações em que no máximo um elemento pode ter a relação com um elemento dado. Tais são as de pai, mãe, marido (excepto no Tibete), quadrado de, seno de, e assim por diante.\footnote{Para o leitor com alguns conhecimentos de matemática elementar, e supondo fixado o domínio dos números reais (Cap. VII), diz-se que \(x \) está na relação «quadrado de» com \(y \) se e só se \(x = y^2 \). O domínio desta relação é o conjunto dos números reais não negativos. Por outro lado, «seno» é o nome de uma conhecida função trigonométrica: \(x \) está na relação «seno» com \(y \) se e só se \(x = \text{sen} y \). O domínio desta relação é o conjunto dos números reais no intervalo de \(-1\) a \(+1\), inclusive: \([-1, +1]\). Todo o número real \(y \) tem um único quadrado e um único seno, mas dado \(x \), se \(x \) é positivo, há exatamente dois valores de \(y \) cujo quadrado é \(x \) (por exemplo, \(4 = 2^2 \) e \(4 = (-2)^2 \); e se \(x \) está no intervalo \([-1, +1]\), há infinitos valores de \(y \) cujo seno é \(x \) (por exemplo, \(\frac{\sqrt{2}}{2} = \text{sen} \frac{\pi}{4} = \text{sen} \frac{3\pi}{4} = \text{sen} \frac{5\pi}{4} = \ldots \)).} Mas as de um-dos-pais, raiz quadrada etc., não são de um-para-muitos. É formalmente possível substituir todas as relações por relações de um-para-muitos por meio de um artifício. Tome-se (digamos) a relação menor entre os números indutivos. Dado qualquer número \(n \) maior do que 1, não haverá somente um número que tenha com \(n \) a relação menor, mas até toda uma classe de números que são menores do que \(n \). Isto é uma classe, e a sua relação com \(n \) não é partilhada por
nenhuma outra classe. Podemos chamar à classe de números que são menores do que \(n \) «ascendência própria» de \(n \), no sentido em que falámos de ascendência e posteridade em ligação com a indução matemática. Então, «ascendência própria» é uma relação de um-para-muitos (\(um-para-muitos \) será sempre usada como incluindo \(um-para-um \)), porquanto cada número determina uma única classe de números constituindo a sua ascendência própria. Desta forma, a relação menor do que pode ser substituída por ser membro da ascendência própria de. Assim, uma relação de um-para-muitos na qual os uns formam uma classe, juntamente com os membros desta classe, pode sempre substituir formalmente uma relação que não é de um-para-muitos. Peano, que por alguma razão concebe sempre instintivamente as relações como sendo de um-para-muitos, trata exactamente deste modo aquelas que naturalmente não o são. Contudo, a redução a relações de um-para-muitos por este método, embora possível em princípio, não resulta numa simplificação técnica, e há todos os motivos para pensar que não representa uma análise filosófica, quanto mais não seja pelo facto de as classes deverem ser consideradas «ficções lógicas».\(^{49}\) Continuaremos, portanto, a considerar as relações de um-para-muitos como um tipo especial de relações.

As relações de um-para-muitos estão presentes em todas as frases da forma «o(a) tal e tal do(a) qual e qual». «O Rei da Inglaterra», «a esposa de Sócrates», «o pai de John Stuart Mill» etc., são expressões que descrevem, todas, alguma pessoa, por meio de uma relação de um-para-muitos com um dado elemento. Uma pessoa não pode ter mais de um pai, de modo que «o pai de John Stuart Mill» descreve alguma pessoa, mesmo que não saibamos quem. Há muito a dizer sobre as descrições, mas no momento é nas relações que estamos interessados e as descrições só são relevantes para exemplificar as utilizações das relações de um-para-muitos. Cabe observar que todas as funções matemáticas resultam de relações de um-para-muitos: o logaritmo de \(x \), o co-seno de \(x \) etc., são, como o pai de \(x \), elementos descritos por meio de uma relação de um-para-muitos (logaritmo, co-seno etc.) com

\[49\] Entre a publicação dos *Principles of Mathematics* (1903) e o artigo “Mathematical Logic as Based on the theory of types” (1908), Russell trabalhou temporariamente em alternativas à sua teoria ramificada dos tipos: — a teoria zig-zag, a teoria da limitação na grandeza e a teoria sem classes, as quais aparentemente abandonou em 1908 para retomar o desenvolvimento da teoria dos tipos e da fundamentação da matemática que culminou na publicação dos *Principia Mathematica* (1910-13), em colaboração com Alfred North Whitehead.]
um elemento dado \((x)\). A noção de função não precisa ser limitada aos números, ou aos usos aos quais a matemática nos acostumou; pode ser estendida a todos os casos de relações de um-para-muitos, e «pai de \(x\rangle \) é tão legitimamente uma função da qual \(x\) é o argumento, quanto o é «o logaritmo de \(x\rangle \). As funções neste sentido são funções descritivas. Como veremos adiante, há funções de tipo ainda mais geral e fundamental, nomeadamente, as funções proposicionais; mas de momento devemos limitar a nossa atenção às funções descritivas, isto é, às do tipo «o elemento que tem a relação \(R\) com \(x\rangle \), ou, para simplificar, «o \(R\) de \(x\rangle \), em que \(R\) é uma relação de um-para-muitos.\(^{50}\)

Cabe observar que para que «o \(R\) de \(x\rangle \) descreva um elemento preciso, \(x\) deve ser um elemento com o qual algo tenha a relação \(R\) e não deve haver mais de um elemento que tenha a relação \(R\) com \(x\rangle \), porquanto o artigo «o» ou «a», correctamente usado, deve implicar unicidade. Assim, podemos falar de «o pai de \(x\rangle \) se \(x\) é qualquer ser humano excepto Adão e Eva; mas não podemos falar de «o pai de \(x\rangle \) se \(x\) é uma mesa ou uma cadeira ou qualquer outra coisa que não possa ter um pai. Devemos observar que o \(R\) de \(x\rangle \) existe quando há apenas um elemento, e mais nenhum, que tenha a relação \(R\) com \(x\rangle \). Assim, se \(R\) é uma relação de um-para-muitos, o \(R\) de \(x\rangle \) existe sempre que \(x\) pertence ao domínio inverso de \(R\) e não existe no caso contrário. Ao encararmos «o \(R\) de \(x\rangle \) como uma função no sentido matemático, dizemos que \(x\) é o «argumento» da função, e, se \(y\) é o elemento que tem a relação \(R\) com \(x\rangle \), isto é, se \(y\) é o \(R\) de \(x\rangle \), então \(y\) é o «valor» da função para o argumento \(x\rangle \).\(^{51}\) Se \(R\) é uma relação de um-para-muitos, o universo dos argumentos possíveis para a função é o domínio inverso de \(R\) e o universo dos valores é o domínio. Assim, a extensão dos argumentos possíveis para a função «o pai de \(x\rangle \) compreende todas as pessoas que têm pai, isto é, o domínio inverso da

\(^{50}\) [Não perder de vista a definição de um-para-muitos (p. 55, com os papéis de \(x\) e \(y\) trocados): se \(yRx\) e \(y'Rx\), então \(y = y'\). «O \(R\) de \(x\rangle \) designa-se vulgarmente por \(R(x)\) ou, por vezes, mais simplesmente por \(Rx\), ou \(R_x\).]

\(^{51}\) [Como já foi observado anteriormente, na moderna teoria dos conjuntos identifica-se uma relação com um conjunto de pares ordenados, de tal modo que \(xRx\) e \(yRx\) é equivalente a \((x, y) \in R\), mas, ao contrário da prática moderna, Russell tem o hábito de colocar o argumento \(x\) à direita de \(R\), e por isso ele diz «y é o \(R\) de \(x\rangle \) se \(R\) é de um-para-muitos e \(yRx\), e escreve-se habitualmente, neste caso, \(y = R(x)\), ou \(y = Rx\). Por exemplo, \(y = \log x\), \(y = \sin(x + \log x)\), etc.]
relação pai, enquanto a extensão dos valores possíveis é formada por todos os pais, isto é, o domínio da relação.

Muitas das noções mais importantes na lógica das relações são funções descritivas, como por exemplo: inversa, domínio, domínio inverso, campo. Outros exemplos surgirão com a continuação.

As relações de um-para-um constituem uma classe especialmente importante entre as relações de um-para-muitos. Já tivemos ocasião de falar das relações de um-para-um em ligação com a definição de número, mas é necessária a familiarização com elas e não apenas o conhecimento da sua definição formal. Esta definição pode ser derivada da definição de relações de um-para-muitos: podem ser definidas como as relações de um-para-muitos que também são inversas de relações de um-para-muitos, isto é, as relações que são tanto de um-para-muitos como de muitos-para-um. As relações de um-para-muitos podem ser definidas como relações tais que, se x tem a relação em questão com y, não há outro elemento x' algum que também tenha esta relação com y. Ou podem ser ainda assim definidas: Dados dois elementos x e x', os elementos com os quais x tem a relação dada e aqueles com os quais x' tem esta relação não têm membro algum em comum. Ou, ainda, podem ser definidas como relações tais que o produto relativo delas e das suas inversas é irreflexiva, onde o «produto relativo» [ou «composta»] de duas relações R e S é a relação que existe entre x e z quando há um elemento intermediário y tal que x tem a relação R com y e y a relação S com z. Assim, por exemplo, se R é a relação de pai para filho, o produto relativo de R e da sua inversa será a relação que existe entre x e um homem z quando há uma pessoa y tal que x é o pai de y e y é o filho de z. E óbvio que x e z devem ser a mesma pessoa. Se, por outro lado, tomamos a relação de um-dos-pais e filho(a), que não é de um-para-muitos, não mais podemos alegar que, se x é um-dos-pais de y e y é um filho(a) de z, x e z devem ser a mesma pessoa, porque um pode ser o pai de y e o outro a sua mãe. Fica assim ilustrado que uma característica das relações de um-para-muitos é a de o produto relativo pelas suas inversas ser uma relação irreflexiva. Isto acontece no caso das relações de um-para-um, sendo também irreflexivo produto relativo da inversa pela relação. Dada uma relação R, se x tem a relação R com y, é conveniente pensar em y como sendo alcançado por um «R-avanço» [«R-passo»] ou um «R-vector». No mesmo caso x será atingido por um «R-recuo» [«R-passo atrás»]. Podemos, assim, enunciar a característica das relações de um-para-muitos dizendo que um R-avanço seguido de um R-recuo traz-nos de volta ao nosso ponto de partida. O mesmo não se dá, de modo algum, no tocante a outras relações; por
exemplo, se R é a relação de filho(a) para um-dos-pais, o produto relativo de R e a sua inversa é a relação «si mesmo ou irmão ou irmã», e, se R é a relação de neto ou neta para um-dos-avós, o produto relativo de R e da sua inversa é «si mesmo ou irmão ou irmã ou primo (ou prima) em primeiro grau». Cabe observar que o produto relativo de duas relações não é em geral comutativo, isto é, o produto relativo de R e S não é em geral a mesma relação que o produto relativo de S e R. Por exemplo, o produto relativo de um-dos-pais e irmão é tio, mas o produto relativo de irmão e um-dos-pais é um-dos-pais.

As relações de um-para-um fornecem correspondências entre duas classes, elemento a elemento, de forma que cada elemento de cada classe tem o seu correspondente na outra. Tais correspondências são mais simples de perceber quando as duas classes não têm nenhum membro comum, como a classe dos maridos e a das esposas; pois neste caso sabemos logo se um elemento deve ser considerado aquele de onde a relação vem ou aquele para onde ela vai. É conveniente usar a palavra originário para o elemento do qual a relação vem, e o vocábulo destinatário para o elemento para o qual ela vai. Assim, se x e y são marido e mulher, então, com respeito à relação «marido», x é originário e y é destinatário, mas, com respeito à relação «esposa», y é originário e x é destinatário. Dizemos que uma relação e a sua inversa têm «sentidos» opostos; assim, o «sentido» de uma relação que vai de x para y é o oposto do sentido da relação correspondente de y para x. O facto de uma relação ter um «sentido» é fundamental e é parte da razão para que a ordem possa ser gerada por relações apropriadas. Cabe observar que a classe de todos os originários possíveis para uma relação dada é o seu domínio e a classe de todos os destinatários possíveis é o seu domínio inverso.

Mas acontece frequentemente que o domínio e o domínio inverso de uma relação de um-para-um se sobrepõem. Tome-se, por exemplo, os dez primeiros números inteiros (excluindo 0), e acrescente-se 1 a cada um deles; assim, em vez dos dez primeiros inteiros temos os inteiros:

2, 3, 4, 5, 6, 7, 8, 9, 10, 11.

São os mesmos que tínhamos antes, excepto que 1 foi eliminado de início e 11 foi acrescentado ao fim. Ainda há dez inteiros: são relacionados com os dez anteriores pela relação de para $n + 1$, que é uma relação de um-para-um. Ou, em vez de adicionarmos 1 a cada um

52 [Russell utiliza os termos «referent» e «relatum», que traduzimos por «originário» e «destinatário», respectivamente.]
de nossos dez inteiros originais, poderíamos ter elevado cada um deles ao dobro, obtendo assim os inteiros:

2, 4, 6, 8, 10, 12, 14, 16, 18, 20.

Ainda temos aqui cinco dos nossos inteiros anteriores, isto é, 2, 4, 6, 8, 10. A correspondência é, neste caso, a relação de um número para o seu dobro, que também é uma relação de um-para-um. Ou podemos ainda ter substituído cada número pelo seu quadrado, obtendo assim o conjunto:

1, 4, 9, 16, 25, 36, 49, 64, 81, 100.

Neste caso, somente três números do nosso conjunto original permaneceram, ou seja, 1, 4, 9. A variedade de tais processos de correspondência é ilimitada.

O caso mais interessante do tipo acima é aquele no qual a nossa relação de um-para-um tem um domínio inverso que é parte mas não todo o domínio. Se, em vez de limitarmos o domínio aos primeiros dez inteiros, tivéssemos considerado todos os números indutivos, os exemplos acima teriam ilustrado este caso. Podemos dispor os números considerados em duas filas, colocando cada correspondente debaixo do número do qual ele é correspondente. Assim, quando a correspondência é a relação de \(n \) para \(n + 1 \), temos as duas filas:

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & \ldots & n & \ldots \\
2 & 3 & 4 & 5 & 6 & \ldots & n + 1 & \ldots
\end{array}
\]

Quando a correspondência é a relação de um número para o seu dobro, temos:

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & \ldots & n & \ldots \\
2 & 4 & 6 & 8 & 10 & \ldots & 2n & \ldots
\end{array}
\]

Quando a correspondência é a relação de um número para o seu quadrado, temos:

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & \ldots & n & \ldots \\
1 & 4 & 9 & 16 & 25 & \ldots & n^2 & \ldots
\end{array}
\]

Em todos estes casos, todos os números indutivos aparecem na fila de cima e apenas alguns na de baixo.

Os casos deste tipo, nos quais o domínio inverso é uma «parte própria» do domínio (isto é, uma parte e não o todo), voltarão a
ocupar-nos novamente quando tratarmos do infinito. De momento, queremos apenas observar que existem e requerem consideração.

Outra classe de correspondências frequentemente importantes é a classe das «permutações», na qual o domínio e o domínio inverso são idênticos. Considere-se, por exemplo, os seis arranjos possíveis de três letras:

\[
\begin{align*}
& a, b, c \\
& a, c, b \\
& b, c, a \\
& b, a, c \\
& c, a, b \\
& c, b, a \\
\end{align*}
\]

Cada um destes arranjos pode ser obtido de um dos outros por meio de uma correspondência [um-para-um]. Tome-se, por exemplo, o primeiro e o último, \((a, b, c)\) e \((c, b, a)\). Aqui, \(a\) é relacionado com \(c, b\) consigo mesmo e \(c\) com \(a\). É óbvio que a composta [produto relativo] de duas permutações é novamente uma permutação, isto é, as permutações de uma determinada classe formam o que é chamado um «grupo».

Estes vários tipos de correspondências são importantes em várias circunstâncias, com diferentes finalidades. A noção geral de correspondência de um-para-um tem enorme importância na filosofia da matemática, como já vimos em parte, mas veremos muito mais plenamente com a continuação. Uma das suas utilizações ocupar-nos-á no capítulo seguinte.

53 [Um grupo é uma estrutura \((G, *, e)\) formada por um conjunto não vazio \(G\), uma operação binária em \(G\), digamos \(*\), e um elemento \(e\) em \(G\) com as propriedades seguintes: 1) \(*\) é associativa: para quaisquer \(x, y, z\) em \(G\), \((x * y) * z = x * (y * z)\); 2) \(e\) é elemento neutro para \(*\): para qualquer \(x\) em \(G\), \(x * e = e * x\); 3) todo o elemento tem oposto com respeito a \(*\): para todo \(x\) em \(G\) existe \(y\) em \(G\) tal que \(x * y = y * x = e\). No caso em questão, \(G\) é o conjunto das permutações, \(*\) é a composição (produto relativo) de permutações e \(e\) é a permutação identidade.]
CAPÍTULO VI

Similaridade de relações

Vimos no Cap. II, que duas classes têm o mesmo número de elementos quando são «equipotentes», isto é, quando existe uma relação de um-para-um cujo domínio é uma das classes e cujo domínio inverso é a outra. Em tal caso dizemos que há uma «correspondência de um-para-um» entre as duas classes.

No presente capítulo temos de definir uma relação entre relações, que desempenhará para as relações papel análogo ao que a equipotência de classes desempenha para estas. Chamaremos a esta relação «similaridade de relações» ou «semelhança» quando parecer útil usar uma palavra diferente da que usamos para as classes. Como será definida a semelhança de relações?

Empregaremos novamente a noção de correspondência: admitiremos que o domínio de uma relação possa ser relacionado com o domínio da outra, e o domínio inverso de uma com o da outra; mas isto não é suficiente para o tipo de semelhança que desejamos que exista entre as nossas duas relações. O que queremos é que, sempre que dois elementos estão numa das relações, os dois elementos correspondentes estejam na outra relação. O exemplo mais fácil do tipo de coisa que desejamos é um mapa cartográfico. Quando um lugar está a norte de outro, o ponto do mapa correspondente ao primeiro está acima do correspondente ao segundo; quando um lugar está a oeste de outro, o ponto do mapa correspondente a um está à esquerda do que corresponde ao outro e assim por diante. A estrutura do mapa corresponde à do país que ele mapeia. As relações espaciais do mapa têm «semelhança» com as relações espaciais do país.

54 [Acontece que o autor também utilizou o termo «similaridade» («similarity»), que traduzimos por «equipotência», ou «equivínculosidade») para as correspondências um-para-um entre classes (ver pág. 29), mas a similaridade de relações envolve algo mais do que a simples correspondência um-para-um.]
VI. Similaridade de relações

cartografado. É este tipo de conexão entre relações que desejamos definir.

Podemos, em primeiro lugar, introduzir uma útil restrição. Ao definirmos semelhança limitar-nos-emos às relações que possuem «campos», isto é, aquelas que permitem a formação de uma classe única a partir do domínio e do domínio inverso. Isto nem sempre acontece. Vejamos, por exemplo, a relação «domínio», isto é, a relação que o domínio de uma relação tem com ela. Esta relação tem como domínio todas as classes, porquanto toda a classe é o domínio de alguma relação; e tem para domínio inverso todas as relações, porque toda a relação tem um domínio. Mas as classes e as relações não podem ser reunidas para formar uma só classe nova por serem de «tipos» lógicos diferentes. Não necessitamos entrar na difícil doutrina dos tipos, mas é bom saber quando nos estamos a abster de entrar nela. Podemos dizer, sem tocar-nos nos fundamentos da afirmação, que uma relação só tem um «campo» quando é «homogénea», isto é, quando o seu domínio e domínio inverso são do mesmo tipo lógico; e, como indicação rudimentar do que queremos dizer por «tipo», podemos afirmar que os indivíduos, as classes de indivíduos, as relações entre indivíduos, as relações entre classes, as relações entre classes e indivíduos etc., são de tipos diferentes. Acontece que a noção de semelhança não é muito útil quando aplicada a relações que não são homogéneas; devemos, portanto, ao definir semelhança, simplificar o nosso problema referindo-nos ao «campo» de uma das relações envolvidas. Isto limita um pouco a generalidade da nossa definição, mas a limitação não tem qualquer importância prática. E, uma vez enunciada, não necessita mais de ser lembrada. Podemos definir que duas relações P e Q são «similares» ou que têm «semelhança» quando existe uma correspondência de um-para-um, S, cujo domínio é o campo de P e cujo domínio inverso é o campo de Q, e que é tal que, se um elemento tem a relação P com outro, o correspondente do primeiro tem a relação Q com o correspondente do outro e vice-versa. A figura na página seguinte tornará isto mais claro. Indiquemos por x e y dois elementos que estão na relação P. Então, tem de haver dois elementos z e w tais que x corresponde a z por S, y corresponde a w por S e z está na relação Q com w. Se isto acontece para todo o par de elementos como x e y, e a recíproca acontece com todo o par de elementos como z e w, é claro que sempre que um par de elementos satisfaça a relação P haverá um par correspondentemente que satisfaz a relação Q e vice-versa; e é isto o que desejamos garantir com a nossa definição. Podemos eliminar algumas redundâncias no esboço de definição acima pela observação de que, quando as ditas condições
são realizadas, a relação P é o mesmo que o produto relativo de S e Q e a inversa de S, isto é, o P-avanço de x para y pode ser substituído pela sequência do S-avanço de x para z, o Q-avanço de z para w, e o S-recuo de w para y. Podemos então estabelecer as seguintes definições:

Uma relação S entre duas relações P e Q diz-se uma «similaridade» ou «similaridade ordinal» se S é uma relação [correspondência] de um-para-um, tem o campo de Q para domínio inverso e é tal que P é o produto relativo de S e Q e a inversa de S.\(^{55}\)

Duas relações P e Q são ditas «similares» ou que têm a mesma «semelhança» quando há pelo menos uma similaridade entre P e Q.

\[
\begin{array}{c}
S \\
\end{array}
\]

\[
\begin{array}{c}
\rightarrow \quad P \\
\end{array}
\]

\[
\begin{array}{c}
\quad S \\
\quad \ \\
\quad S \\
\end{array}
\]

\[
\begin{array}{c}
\rightarrow \\
\quad Q \\
\rightarrow \\
\end{array}
\]

\[
\begin{array}{c}
\quad z \\
\rightarrow \\
\end{array}
\]

\[
\begin{array}{c}
\rightarrow \\
\quad w \\
\end{array}
\]

Constatar-se-á que estas definições fornecem aquilo que acima considerámos necessário.

E ver-se-á que duas relações similares partilham todas as propriedades que não dependem dos elementos que realmente fazem parte dos seus campos. Por exemplo, se uma é irreflexiva, o mesmo se dá com a outra; se uma é transitiva, a outra também o é; se uma é conexa, assim também a outra. Portanto, se uma é serial, a outra também será serial. E também se uma é uma relação de um-para-muitos ou de um-para-um, a outra será, igualmente, uma relação de um-para-muitos ou de um-para-um e assim por diante, abrangendo todas as propriedades gerais das relações. Até mesmo as asserções que envolvem os próprios elementos do campo de uma relação, embora talvez não sejam verdadeiras quando aplicadas a uma relação de similaridade, serão sempre capazes de tradução em asserções correspondentes análogas.

\(^{55}\) [Observe-se que o produto relativo (ou composição) de relações é associativo. O autor não introduz nenhuma notação para o produto relativo ou composição de relações ou de funções. Modernamente escreveríamos $P = S^{-1} \circ Q \circ S$ (ler «S^{-1} após Q após S», onde S^{-1} é a inversa de S), ou $S \circ P = Q \circ S$.]

Somos levados por tais considerações a um problema que tem, na filosofia matemática, uma importância que não foi até agora adequadamente reconhecida. O nosso problema pode ser assim enunciado:

Dada uma asserção numa linguagem da qual conhecemos a gramática e a sintaxe mas não o vocabulário, quais os significados possíveis de uma tal asserção e quais os significados das palavras desconhecidas que a tornam verdadeira?

A importância desta pergunta reside no facto de ela representar, muito mais aproximadamente do que se pode supor, o estado do nosso conhecimento da natureza. Sabemos que certas proposições científicas — as quais são, nas ciências mais avançadas, expressas em símbolos matemáticos — são mais ou menos verdadeiras no mundo, mas estamos muito distantes no que concerne a interpretação a ser atribuída aos termos que ocorrem nestas proposições. Sabemos muito mais (usando de momento duas palavras antiquadas) sobre a matéria da natureza do que sobre a forma. Consequentemente, o que realmente sabemos quando enunciamos uma lei da natureza é somente que há provavelmente alguma interpretação dos nossos termos que tornará a nossa lei aproximadamente verdadeira. Assim, ganha alta importância a questão: quais os significados possíveis de uma lei expressa em termos dos quais não conhecemos o significado substantivo mas apenas a gramática e a sintaxe? E esta pergunta é a sugerida acima.

Ignoraremos por enquanto a pergunta geral, a qual nos ocupará mais adiante; primeiro, devemos investigar mais a questão da semelhança em si mesma.

Devido ao facto de duas relações similares terem as mesmas propriedades excepto quando dependem do facto de os seus campos serem formados exactamente pelos elementos de que elas são compostas, torna-se deseável uma nomenclatura que coliga todas as relações similares a uma determinada relação. Assim como chamamos ao conjunto das classes que são equipotentes a uma classe dada o «número» daquela classe, podemos, de igual modo, chamar ao conjunto de todas as relações que são similares a uma relação dada o «número» daquela relação. Mas, a fim de evitar confusão com os números apropriados às classes, falaremos, neste caso, de «número-de-similaridade». Assim, temos as seguintes definições:
O «número-de-similaridade» de uma relação é a classe de todas as relações que lhe são similares.\footnote{[Não fora a circunstância de, neste livro, a palavra «tipo» estar muito associada a «tipo lógico», teríamos preferido a designação «tipo de similaridade», «tipo de isomorfia» ou simplesmente «tipo» a «número de similaridade».]}

Os «números-de-similaridade» formam o conjunto de todas as classes de relações que são os números-de-similaridade das várias relações, ou, o que vem a ser o mesmo, um número-de-similaridade é uma classe de relações consistindo de todas as relações que são similares a um membro qualquer da classe.

Quando for necessário falar dos números de classes de um modo que torne impossível confundi-los com números-de-similaridade, chamá-los-emos «números cardinais». Assim, os números cardinais são os números apropriados às classes. Estão aí incluídos os inteiros comuns da vida quotidiana e também certos números infinitos, dos quais falaremos mais adiante. Quando falamos de «números» sem especificação, deve ficar subentendido que nos referimos aos números cardinais. A definição de número cardinal é, cabe lembrar, a seguinte:

O «número cardinal» de uma determinada classe é o conjunto de todas as classes que são equipotentes à classe dada.

As cadeias constituem a aplicação mais óbvia dos números-de-similaridade. Duas cadeias podem ser consideradas igualmente longas quando têm o mesmo número-de-similaridade. Duas cadeias finitas terão o mesmo número-de-similaridade quando os seus campos tiverem o mesmo número cardinal de elementos, e só neste caso — isto é, uma cadeia de (digamos) 15 elementos terá o mesmo número-de-similaridade que qualquer outra cadeia de quinze termos, mas não terá o mesmo número-de-similaridade que uma cadeia de 14 ou 16 termos, nem, naturalmente, o mesmo número-de-similaridade que uma relação que não seja serial. Assim, no caso assaz especial das cadeias finitas, há um paralelismo entre os números cardinais e os números-de-similaridade. Os números-de-similaridade aplicáveis às cadeias podem ser chamados «números seriais» (os que são vulgarmente chamados «números ordinais» formam uma subclasse destes); assim, um número serial finito é determinado quando conhecemos o número cardinal de elementos do campo de uma cadeia que tenha o número serial em questão. Se \(n \) é um número cardinal finito, o número-de-similaridade de uma cadeia que tem \(n \) termos é chamado o número «ordinal» \(n \). (Há também números ordinais infinitos, mas falaremos deles em capítulo posterior). Quando o número cardinal de elementos do campo de uma cadeia é finito, o número-de-similaridade da cadeia
VI. Similaridade de relações

não é determinado meramente pelo número cardinal, pois, na verdade, existe um número infinito de números-de-similaridade para um número cardinal dado, como veremos quando considerarmos as cadeias infinitas. Quando uma cadeia é infinita, o que podemos chamar o seu «comprimento», isto é, o seu número-de-similaridade, pode variar sem que seja alterado o seu número cardinal; mas quando uma cadeia é finita isto não pode acontecer.

Tal como para os números cardinais, podemos definir uma adição e uma multiplicação para os números-de-similaridade, e pode ser desenvolvida toda uma aritmética destes números. A maneira pela qual isto deve ser feito pode ser facilmente vista se considerarmos o caso das cadeias. Suponhamos, por exemplo, que desejamos definir a união de duas cadeias que não se sobrepõem, de modo que o número-de-similaridade da soma seja capaz de ser definido como a soma dos números-de-similaridade das duas cadeias. Em primeiro lugar, é claro que há uma ordem entre as duas cadeias: uma delas deve ser colocada antes da outra. Assim, se e são as relações geradoras das duas cadeias, na cadeia que é a união com P colocado antes de Q, todo o membro do campo de P precederá todo o membro do campo de Q. Deste modo, a relação serial a ser definida como a soma de P e Q não é simplesmente «P ou Q», mas «P ou Q ou a relação de qualquer membro do campo de P com qualquer membro do campo de Q». Admitindo que P e Q não se sobrepõem, esta relação é serial, mas «P ou Q» não é serial, pois não é conexa, visto que nenhum membro do campo de P está na relação com um membro do campo de Q. Assim, a soma de P e Q, conforme acima definida, é o que necessitamos para definir a soma de dois números-de-similaridade. Modificações análogas são necessárias para os produtos e as potências. A aritmética resultante não obedece à lei comutativa: a soma ou o produto de dois números-de-similaridade dependem geralmente da ordem em que são efectuados. Mas obedece à lei associativa, a uma forma da lei distributiva, e a duas das leis formais para as potências, não apenas quando aplicadas aos números seriais mas também aos números-de-similaridade em geral. A aritmética das relações, embora recente, é na realidade um ramo absolutamente respeitável da matemática.

Não se deve supor que, meramente pelo facto de as cadeias possibilitem a mais óbvia aplicação da ideia de semelhança, não haja outras aplicações importantes. Já mencionámos os mapas e podemos estender os nossos pensamentos destes exemplos à geometria em geral. Se o sistema de relações pelo qual uma geometria é aplicada a um certo conjunto de elementos puder ser transposto inteiramente em relações de semelhança com um sistema que se aplique a outro
conjunto de elementos, então as geometrias dos dois conjuntos são indistinguíveis do ponto de vista matemático, isto é, as proposições são todas as mesmas, exceto pelo facto de serem aplicadas num caso a um conjunto de elementos, e, no outro, a outro conjunto de elementos. Podemos ilustrar isto por meio das relações do tipo «estar entre», que considerámos no Cap. IV. Vimos então que se uma relação ternária tiver certas propriedades lógicas formais, dará origem a cadeias e poderá ser chamada uma «relação-entre». Dados dois pontos a e b quaisquer, podemos usar a relação-entre para definir a linha recta determinada por estes dois pontos; ela consiste de a e b, juntamente com todos os pontos x, tais que os três pontos a, b, x, por qualquer ordem, estão na relação. Foi demonstrado por O. Veblen que podemos considerar todo o nosso espaço como o campo de uma relação-entre ternária e definir a nossa geometria pelas propriedades que atribuímos à nossa relação-entre.\(^{57}\) Ora a semelhança é tão facilmente definível entre relações ternárias como entre relações binárias. Se B e B' são duas relações-entre, de modo que $x B(y, z)$ signifique x está entre y e z com respeito a B, chamaremos a S uma similaridade entre B e B' se tiver o campo de B' para domínio inverso, e for tal que a relação B exista entre três elementos quando B' exista entre os seus S-similares, e somente nestas condições. E diremos que B é similar a B' quando há pelo menos uma similaridade entre B e B'. O leitor poderá facilmente convencer-se de que, se B é similar a B' neste sentido, não poderá haver diferença alguma entre a geometria gerada por B e a gerada por B'.

Resulta daqui que o matemático não precisa de se preocupar com a natureza particular ou intrínseca dos seus pontos, rectas e planos, mesmo quando esteja a especular como um matemático aplicado. Podemos dizer que há indícios empíricos da verdade aproximada das partes da geometria que não sejam matérias de definição. Mas não há indícios alguns quanto ao que deva ser um «ponto». Tem de ser algo que satisfaça os nossos axiomas o melhor possível, mas não tem de ser «muito pequeno» ou «destituído de partes». O facto de ser ou não estas coisas é indiferente, desde que satisfaça os nossos axiomas. Se pudermos construir uma estrutura lógica com o nosso material empírico, por mais complicada que seja, que satisfaça os nossos axiomas.

geométricos, esta estrutura poderá ser legitimamente chamada um «ponto». Não devemos dizer que nada mais existe que possa ser legitimamente chamado um «ponto»; devemos apenas dizer: «Este objecto que construímos é suficiente para o geómetra; poderá ser um de muitos, qualquer um dos quais seria suficiente, mas isto não nos interessa, porquanto este objecto é suficiente para vindicar a verdade empírica da geometria, na medida em que a geometria não seja uma questão de definição». Isto é apenas um exemplo do princípio geral de que o que importa em matemática, e, em alto grau, nas ciências físicas, não é a natureza intrínseca dos nossos objectos, mas a natureza lógica das suas inter-relações.

Podemos dizer de duas relações similares que elas têm a mesma «estrutura». Para fins matemáticos (embora não para os da filosofia pura), a única coisa que importa a respeito de uma relação são as suas determinações e não a sua natureza intrínseca. Assim como as classes podem ser definidas por vários conceitos diferentes mas co-extensivos — isto é, «homem» e «bipede sem penas» —, também duas relações que são conceptualmente diferentes podem ter exactamente as mesmas determinações. Uma «determinação» de uma relação deve ser concebida como um par ordenado de elementos, de forma que um dos elementos vem primeiro e o outro depois; o par deve, naturalmente, ser tal que o seu primeiro termo tenha a relação em questão com o segundo. Tomemos, por exemplo, a relação «pai»: podemos chamar «extensão» desta relação à classe de todos os pares ordenados (x, y) tais que x é o pai de y. Do ponto de vista matemático, a única coisa importante na relação «pai» é que ela define este conjunto de pares ordenados. De modo geral, dizemos:

A «extensão» de uma relação é a classe dos pares ordenados (x, y) tais que x tem essa relação com y.

Podemos agora dar um passo à frente no processo de abstracção e considerar o que queremos dizer por «estrutura». Dada qualquer relação, podemos, se ela for suficientemente simples, construir um seu diagrama. Para concretizar, tomemos uma relação cuja extensão sejam os seguintes pares: ab, ac, ad, bc, ce, de, onde a, b, c, d, e, são cinco elementos quaisquer. Podemos construir um diagrama desta relação tomando cinco pontos sobre um plano e ligando-os por setas, como na figura da página seguinte. O diagrama revela aquilo a que chamamos «estrutura» da relação.

58 [Os pares ordenados de elementos a que se aplique ou que a satisfazem, no caso de uma relação binária — ver adiante.]
É claro que a «estrutura» da relação não depende dos elementos particulares que formem o campo da relação. O campo pode ser modificado sem que se modifique a estrutura e esta pode ser alterada sem que se altere o campo — por exemplo, se acrescentássemos o par ae à ilustração acima, teríamos de alterar a estrutura, mas não o campo. Diremos que duas relações têm a mesma «estrutura» quando o mesmo mapa servir para ambas — ou, o que vem a ser a mesma coisa, quando qualquer delas pode ser um mapa da outra (uma vez que toda relação pode ser o seu próprio mapa). E isto é, como mostrará um momento de reflexão, precisamente a mesma coisa a que chamamos «semelhança». Equivale a dizer, duas relações têm a mesma estrutura quando são semelhantes, isto é, quando têm o mesmo número-de-similaridade. Assim, aquilo que definimos como «número-de-similaridade» é exactamente a mesma coisa que é obscuramente insinuada pela palavra «estrutura» — um termo que, por mais importante que seja, nunca é definida (ao que saibamos) em termos precisos por aqueles que o utilizam.

Houve muita especulação na filosofia tradicional, que poderia ter sido evitada caso se tivesse percebido a importância da estrutura e a dificuldade em promovê-la. Por exemplo, diz-se com frequência que o espaço e o tempo são subjectivos, mas têm contrapartes objectivas; ou que os fenómenos são subjectivos, mas causados pelas coisas em si, as quais devem ter diferenças inter se correspondentes às diferenças nos fenómenos aos quais dão origem. Quando estas hipóteses são formuladas, supõe-se geralmente que poderemos saber pouquissimo sobre as contrapartes objectivas. Na realidade, porém, se as hipóteses, conforme enunciadas, fossem correctas, as contrapartes objectivas formariam
um universo com a mesma estrutura que a do universo fenomenológico, permitindo-nos deduzir dos fenómenos a verdade de todas as proposições que podem ser enunciadas em termos abstractos e que se sabe serem verdadeiras no tocante aos fenómenos. Se o universo dos fenómenos tem três dimensões, o mesmo deverá suceder ao universo subjacente aos fenómenos; se o universo fenomenal é euclidiano, também o deverá ser o outro e assim por diante. Em suma, toda a proposição que tenha uma significação comunicável deve ser verdadeira nos dois universos ou em nenhum: a única diferença deverá estar justamente na essência da individualidade, que foge sempre às palavras e sufoca as descrições, mas que, precisamente por isso, é irrelevante para a ciência. Mas o único propósito que os filósofos têm em mira ao condenarem os fenómenos é persuadirem-se a si mesmos e aos outros de que o mundo real é muito diferente do mundo das aparências. Podemos simpatizar com o seu desejo de demonstrar uma tão desejável proposição, mas não os podemos felicitar pelo seu êxito. É verdade que muitos deles não atribuem contrapartes objectivas aos fenómenos, e estes escapam ao argumento acima. Os que atribuem contrapartes são, por via de regra, muito reticentes sobre o assunto, provavelmente por sentirem instintivamente que, se prosseguirem no assunto, isso lhes trará um rapprochement entre o mundo real e o mundo fenomenal. No caso de persistirem no assunto, dificilmente poderiam evitar as conclusões que temos vindo a sugerir. Em tais questões, assim como em muitas outras, a noção de estrutura ou número-de-similaridade é importante.
CAPÍTULO VII

Números racionais, reais e complexos

Já vimos como definir os números cardinais e também os números-de-similaridade, dos quais o que se chama vulgarmente números ordinais são uma espécie particular. Constatar-se-á que cada um destes tipos de número poderá ser tanto infinito como finito. Mas nenhum deles é capaz, como se apresenta, de ser submetido às extensões familiares do conceito de número, a saber, as extensões para números negativos, fraccionários, irracionais e complexos. No presente capítulo, daremos de maneira abreviada as definições lógicas destas várias extensões.

Um dos erros que retardaram a descoberta de definições correctas nesta área é a ideia comum de que cada extensão do conceito de número inclui os tipos anteriores como casos especiais. Pensou-se, ao tratar dos números positivos e negativos, que os inteiros positivos podiam ser identificados com os inteiros originais sem sinal. Pensou-se também que uma fração cujo denominador é 1 pudesse ser identificada com o número natural que é o seu numerador. E pensou-se que os números irracionais, tais como a raiz quadrada de 2, encontrassem o seu lugar entre as fracções racionais, sendo maiores do que algumas delas e menores do que outras, de modo que os números racionais e os irracionais pudessem ser tomados juntos como uma classe, chamada «números reais». E quando a ideia de número voltou a ser estendida de forma a incluir os números «complexos», isto é, números que envolvem a raiz quadrada de −1, pensou-se que os números reais pudessem ser considerados como aqueles números complexos nos quais a parte imaginária (isto é, a parte que multiplica a raiz quadrada de −1) fosse zero. Todas estas suposições eram errôneas, devendo ser rejeitadas, como veremos, para que possam ser dadas definições correctas.

Começemos com os inteiros positivos e negativos. Torna-se óbvio, após um momento de consideração, que +1 e −1 devem ser, ambos,
relações, devendo, de facto, ser a inversa uma da outra. A definição óbvia e suficiente é a de que $+1$ é a relação de $n + 1$ para n, e -1 é a relação de n para $n + 1$. De modo geral, se m é um número indutivo, $+m$ será a relação de $n + m$ para n (para qualquer n) e $-m$ será a relação de n para $n + m$. De acordo com esta definição, $+m$ será uma relação de um-para-um desde que n seja um número cardinal (finito ou infinito) e m seja um número cardinal indutivo. Mas $+m$ não pode, sob circunstância alguma, ser identificado com m, que não é uma relação, mas uma classe de classes. Na verdade, $+m$ é tão distinto de m quanto $-m$.

As frações são mais interessantes do que os inteiros positivos ou negativos. Necessitamos das frações para muitos fins, mas talvez mais obviamente para as medições. O meu amigo e colaborador Dr. A. N. Whitehead desenvolveu uma teoria das frações especialmente adaptada à sua aplicação às medições, a qual é apresentada em *Principia Mathematica*. Mas se tudo o que se necessita é definir objectos que possuam as propriedades puramente matemáticas requeridas, este propósito pode ser alcançado por um método mais simples, que adoptaremos aqui. Definiremos a fração m/n como sendo aquela relação que existe entre dois números indutivos x e y quando $xn = ym$. Esta definição permite demonstrar que m/n é uma relação de um-para-um, desde que nem nem sejam nulos. E, naturalmente, m/n é a relação inversa de m/n. Pela definição acima torna-se claro que a fração $m/1$ é a relação entre dois inteiros x e y que consiste no facto de que $x = ym$. Esta relação, como a relação $+m$, não pode de modo algum ser identificada com o número cardinal indutivo m, porque uma relação e uma classe de classes são objectos de naturezas flagrantemente diferentes. Ver-se-á que $0/n$ é sempre a mesma relação, seja qual for o número indutivo n; ela é, em suma, uma relação entre 0 e qualquer outro cardinal indutivo. Podemos chamá-la o zero dos números racionais; ela não é, naturalmente, idêntica ao número cardinal 0. Inversamente, a relação $m/0$ é sempre a mesma, seja qual for o número indutivo m. Não há cardinal indutivo

59 Vol. III. *300* e segs., especialmente 303. [Ao longo do texto, Russell refere-se indistintamente à fração e à razão quando se quer referir ao *número (racional)* que a fração ou razão representa.]

60 Na prática, continuaremos naturalmente a falar das frações como se fossem (digamos) maiores ou menores do que 1, o que significa maior ou menor do que a razão 1/1. Enquanto ficar entendido que a razão 1/1 e o número cardinal 1 são diferentes, não é necessário enfatizar a diferença ao ponto de ser pedante.
algum correspondente a \(m/0 \). Podemos chamá-la «o infinito dos racionais». É um exemplo da espécie de infinito tradicional em matemática, que é representado por \(\infty \). Trata-se de uma espécie inteiramente diferente da do infinito cantoriano, que consideraremos no próximo capítulo. O infinito dos racionais não exige, para a sua definição ou uso, quaisquer classes infinitas ou inteiros infinitos. Não é, na realidade, uma noção importante e poderíamos desprezá-la inteiramente se houvesse algum interesse em fazê-lo. O infinito cantoriano, por outro lado, é da maior e mais fundamental importância; entende-lo abre o caminho para campos inteiramente novos da matemática e filosofia.

Observar-se-á que somente o zero e o infinito, entre as razões, não são relações de um-para-um. Zero é de um-para-muitos e o infinito é de muitos-para-um.

Não há dificuldade alguma em definir «maior» e «menor» entre as razões (ou fracções). Dadas duas razões \(m/n \) e \(p/q \), diremos que \(m/n \) é menor do que \(p/q \) se \(mn \) é menor do que \(pq \). Também não há dificuldade alguma em demonstrar que a relação «menor do que», assim definida, é serial, de modo que as razões formam uma cadeia por ordem de grandeza. Nesta cadeia, zero é o menor termo e infinito é o maior. Se omitirmos zero e infinito desta cadeia, não mais haverá razão máxima nem razão mínima; é óbvio que se \(m/n \) for qualquer razão outra que zero ou infinito, \(m/2n \) será menor e \(2m/n \) será maior do que ela, embora nenhuma seja zero ou infinito, de forma que \(m/n \) não será a máxima nem a mínima razão, e, portanto (quando zero e infinito são omitidos) não haverá razão mínima nem razão máxima, porquanto \(m/n \) foi escolhida ao arbitrio. Do mesmo modo, podemos provar que por mais próximas que duas fracções possam ser, haverá sempre outras fracções entre elas. Consideremos duas fracções \(m/n \) e \(p/q \), das quais \(p/q \) é a maior. Então, é fácil ver (ou provar) que \((m+p)/(n+q) \) é maior do que \(m/n \) e menor do que \(p/q \). Assim, a cadeia das razões é uma cadeia na qual não há dois termos consecutivos, havendo sempre outros termos situados entre dois quaisquer. Como há outros termos entre estes outros e assim por

\[\text{Este símbolo é utilizado em matemática sobretudo na teoria dos limites (capítulos X e XI), em expressões como } \lim_{n \to \infty} x_n = a, \lim_{x \to \infty} f(x) = +\infty, \text{ que são abreviaturas muito cómodas de expressões mais complexas onde não ocorre o símbolo } \infty. \text{ Este símbolo não designa, em geral, nenhum número ou entidade matemática bem definida ou determinada.} \]

\[\text{É claro que, por enquanto, só estão a ser considerados números não negativos.} \]
VII. Números racionais, reais e complexos

diante ad infinitum, é óbvio que há um número infinito de razões entre duas quaisquer, por mais próximas que estas duas estejam. Uma cadeia que tenha a propriedade de haver sempre outros termos entre dois quaisquer, de modo que não haja dois consecutivos, chama-se «densa». Assim, as razões de inteiros por ordem de grandeza formam uma cadeia densa. Tais cadeias têm muitas propriedades importantes, sendo importante observar que as razões oferecem exemplo de cadeia densa gerada de modo puramente lógico, sem recurso ao espaço ou tempo ou a qualquer outro dado empírico.

As razões positivas e negativas podem ser definidas de modo análogo àquele pelo qual definimos os inteiros positivos e negativos. Tendo primeiro definido a soma de duas razões \(m/n \) e \(p/q \) como igual a \((mq + pn)/nq\), definimos \(+p/q\) como a relação de \(m/n + p/q \) para \(m/n \), em que \(m/n \) é uma razão qualquer; e \(-p/q\) é, naturalmente, a inversa de \(+p/q\). Esta não é a única maneira possível de definir as razões positivas e negativas, mas sim a que, para a finalidade que temos em vista, tem o mérito de ser uma adaptação óbvia da maneira que foi adoptada no caso dos inteiros.

Passamos agora a uma extensão mais interessante da ideia de número, isto é, a extensão aos chamados números «reais», que são uma espécie que engloba os irracionais. No Cap. I, tivemos ocasião de mencionar os «incomensuráveis» e a sua descoberta por Pitágoras. Foi através deles, isto é, da geometria, que se pensou pela primeira vez nos números irracionais. Um quadrado que tenha 1 cm de lado, terá para diagonal a raiz de 2 cm. Mas, como descobriram os antigos, não há fração alguma cujo quadrado seja 2. Esta proposição é demonstrada no livro X [dos Elementos] de Euclides, que é um daqueles livros que os estudantes liceais pensaram ter sido felizmente perdidos no tempo em que Euclides ainda era usado como manual de ensino. A prova é extraordinariamente simples. Admitamos que \(m/n \) era a raiz quadrada de 2, de modo que \(m^2/n^2 = 2 \), isto é, \(m^2 = 2n^2 \). Assim, \(m^2 \) é um número par, e, portanto, \(m \) deverá ser par, porque o quadrado de um número ímpar é ímpar. Mas se \(m \) é par, \(m^2 \) deve ser divisível por 4, porque se \(m = 2p \), então \(m^2 = 4p^2 \). Assim, devemos ter \(4p^2 = 2n^2 \), em que \(p \) é a metade de \(m \). Portanto, \(2p^2 = n^2 \) e, por conseguinte, \(n/p \) será também a raiz quadrada de 2. Mas então podemos repetir o argumento: se \(n = 2q \), \(p/q \) também será a raiz quadrada de 2, e assim por diante, através de uma cadeia infinidável de

\[63\] Estritamente falando, esta asserção, assim como as que se seguem até ao fim do parágrafo, envolve o chamado «axioma do infinito», que será discutido em capítulo posterior.
números que são, cada um deles, igual a metade do seu predecessor. Mas isto é impossível; se dividirmos um número por 2 e depois dividirmos a metade ao meio e assim por diante, deveremos atingir um número ímpar após um número finito de passos. Ou podemos apresentar o argumento com maior simplicidade admitindo que a fração \(m/n \) com que começámos já se encontre reduzida aos seus termos mais simples; neste caso, \(m \) e \(n \) não podem ser ambos pares; vimos, no entanto, que se \(m^2/n^2 = 2 \), ambos o devem ser. Em conclusão, não pode haver fração alguma \(m/n \) cujo quadrado seja 2.

Portanto, nenhuma fração exprimirá exactamente o comprimento da diagonal de um quadrado cujo lado meça um centímetro. Isto parece um desafio lançado à aritmética pela natureza. Por mais que o aritmético se gabe (como fez Pitágoras) dos seus conhecimentos sobre as potencialidades dos números, a natureza parece ludibriá-lo com a exibição de comprimentos que nenhum número [fraccionário] pode medir em termos da unidade. Mas o problema não permaneceu nesta forma geométrica. Assim que a álgebra foi inventada, o mesmo problema surgiu no tocante à resolução de equações, embora tenha, então, assumido uma forma mais ampla, pois passou a envolver também os números complexos.

É claro que podem ser encontradas frações cujo quadrado se aproxime cada vez mais de 2. Podemos formar uma sucessão crescente de frações com quadrados menores do que 2, mas diferindo de 2 nos seus membros ulteriores por menos do que qualquer quantidade dada. Equivale a dizer, supondo escolhida qualquer quantidade de antemão, digamos um bilionésimo, que se constatará que todos os termos da nossa sucessão, após um determinado termo, digamos o décimo, terão quadrados que diferirão de 2 por menos do que aquela quantidade. E se se tivesse escolhido uma quantidade ainda menor, poderia ter sido necessário avançar mais na sucessão, porém mais cedo ou mais tarde chegariamos a um dos seus termos, digamos o vigésimo, após o qual todos os termos teriam quadrados diferindo de 2 por menos do que esta quantidade mais pequena. Se efectuarmos a extracção da raiz quadrada de 2 pelo algoritmo aritmético usual, obteremos uma dízima interminável que, produzida até um número conveniente de casas decimais, preenche exactamente as condições acima. Podemos igualmente formar uma sucessão decrescente de frações cujos quadrados são todos maiores do que 2, mas maiores por quantidades continuamente menores à medida que nos aproximamos de termos mais avançados da cadeia, e diferindo, mais cedo ou mais tarde, por menos do que qualquer quantidade especificada. Desta maneira, estamos a apertar um cerco em torno da raiz quadrada de 2 e poderá
parecer difícil que ela nos escape permanentemente. Não obstante, não é por este método que chegaremos realmente à raiz quadrada de 2.

Se dividirmos todas as razões em duas classes, segundo o critério de os seus quadrados serem ou não menores do que 2, constataremos que, entre aquelas cujos quadrados não são menores do que 2, todas têm quadrados maiores do que 2. Não há um máximo para as razões cujos quadrados sejam menores do que 2 nem um mínimo para aquelas cujos quadrados sejam maiores do que 2. Não há menorante algum, exceto 0, para as diferenças entre os números cujos quadrados são um pouco maiores do que 2 e aqueles cujos quadrados são um pouco menores do que 2. Podemos, em suma, dividir todas as razões em duas classes tais que todos os termos de uma delas sejam menores do que todos os da outra, a primeira não tenha máximo e a segunda não tenha mínimo. Entre estas duas classes, onde se deve situar , nada existe. Assim, o nosso cerco, embora o tenhamos apertado ao máximo possível, foi apertado em torno do lugar errado e não capturou

O método acima, de dividir todos os termos de uma cadeia em duas classes, foi concebido por Dedekind, sendo, portanto, chamado método dos «cortes de Dedekind». Com respeito ao que acontece no ponto de corte, há quatro possibilidades: (1) pode haver um máximo para a secção inferior e um mínimo para a secção superior, (2) pode haver um máximo para a primeira e nenhum mínimo para a outra, (3) pode não haver máximo para a primeira, mas haver um mínimo para a outra, (4) pode não haver máximo de uma nem mínimo da outra. Destes quatro casos, o primeiro é ilustrado por qualquer cadeia em que haja termos consecutivos: na progressão dos inteiros, por exemplo, uma secção inferior deverá terminar com algum número e a secção superior deverá começar com . O segundo caso será ilustrado pela cadeia das razões se tomarmos para secção inferior todas as razões menores do que 1, inclusive, e para secção superior todas as razões maiores do que 1. O terceiro caso é ilustrado se tomarmos para secção inferior todas as razões inferiores a 1 e para secção superior todas as razões de 1 para cima (incluindo 1). O quarto caso, como

vimos, é ilustrado se colocarmos na secção inferior todas as razões cujos quadrados são menores do que 2 e na secção superior todas as razões cujos quadrados são maiores do que 2.

Podemos ignorar o primeiro dos quatro casos, porquanto ele surge apenas nas cadeias de termos consecutivos. No segundo dos quatro casos, dizemos que o máximo da secção inferior é o limite inferior da secção superior, ou de qualquer conjunto de termos escolhidos da secção superior de tal forma que nenhum elemento da secção superior esteja antes de todos eles. No terceiro caso, dizemos que o mínimo da secção superior é o limite superior da secção inferior, ou de qualquer conjunto de elementos escolhidos da secção inferior de tal maneira que nenhum elemento da secção inferior esteja depois de todos eles. No quarto caso, dizemos que há uma lacuna: nem a secção superior tem limite inferior ou mínimo, nem a secção inferior tem limite superior ou máximo. Neste caso, podemos também dizer que temos uma secção irracional, pois as secções na cadeia das razões têm lacunas quando correspondem a irracionais.

O que retardou a verdadeira teoria dos irracionais foi uma crença errônea de que devia haver limites para as cadeias de razões. A noção de limite é da mais alta importância e será bom defin-la antes de prosseguirmos.

Diz-se que um elemento \(x \) é um limite superior de uma classe \(B \) com respeito a uma relação \(P \) se (1) \(x \) não tem máximo algum em \(B \), (2) todo o elemento de \(B \) que pertence ao campo de \(P \) precede \(x \), (3) todo o membro do campo de \(P \) que precede \(x \) precede algum membro de \(B \). (Por «precede» queremos dizer «tem a relação com»).

Isto pressupõe a seguinte definição de máximo:

Diz-se que um elemento \(x \) é um máximo de uma classe \(B \) com respeito à relação \(P \) se \(x \) é membro de \(B \) e do campo de \(P \) e \(x \) não tem a relação \(P \) com qualquer outro membro de \(B \).

Estas definições não exigem que os elementos aos quais se aplicam sejam quantitativos. Por exemplo, dada uma cadeia de instantes de tempo ordenada segundo o critério de mais cedo e mais tarde, o máximo (se existir) será o último dos instantes; mas se forem arranjados segundo o critério de mais tarde e mais cedo, o máximo (se existir) será o primeiro dos instantes.

O mínimo de uma classe com respeito a \(P \) é o seu máximo com respeito à inversa de \(P \); e o limite inferior com respeito a \(P \) é o limite superior com respeito à inversa de \(P \).

As noções de limite e de máximo não exigem como essencial que a relação com respeito à qual são definidas seja serial, mas têm poucas aplicações importantes excepto nos casos em que a relação é serial ou
VII. Números racionais, reais e complexos

quase-serial. Uma noção que é frequentemente importante é a de «limite superior ou máximo», à qual podemos dar o nome de «fronteira superior». Assim, a «fronteira superior» de um conjunto de elementos tirados de uma cadeia é o seu último membro, se o conjunto tiver um último membro, e, caso contrário, é o primeiro elemento depois de todos eles, se houver tal elemento. Se não houver máximo nem limite, não haverá fronteira superior. A «fronteira inferior» é o limite inferior ou mínimo.65

Voltando aos quatro tipos de secção de Dedekind, vemos que, nos três primeiros casos, cada secção tem uma fronteira (superior ou inferior, conforme o caso), enquanto no quarto tipo nenhuma secção tem fronteira. É também claro que sempre que a secção inferior tenha uma fronteira superior, a secção superior terá uma fronteira inferior. No segundo e terceiro casos, as duas fronteiras são idênticas; no primeiro, são elementos consecutivos da cadeia.

Uma cadeia diz-se «dedekindiana» quanto toda a secção tem uma fronteira, superior ou inferior, conforme o caso.

Vimos que a cadeia das razões [de inteiros] por ordem de grandeza não é dedekindiana.

Por serem influenciadas pela imaginação espacial, as pessoas supuseram que as cadeias deveriam ter limites nos casos em que parecia estranho não os terem. Assim, ao perceber que não havia limite racional algum para as razões cujos quadrados são menores do que 2, permitiram-se «postular» um limite irracional, que se destinava a preencher a lacuna de Dedekind. No trabalho acima mencionado, Dedekind estabeleceu o axioma de que a lacuna devia ser sempre preenchida, isto é, que toda secção devia ter uma fronteira. É por este motivo que as cadeias que satisfazem o seu axioma são chamadas «dedekindianas». Mas há infinitas cadeias para as quais o axioma não é satisfeito.

O método de «postular» o que queremos oferece muitas vantagens; são as mesmas vantagens do roubo sobre o trabalho honesto. Deixemo-las aos outros e prossigamos na nossa faina honesta.

É claro que um corte de Dedekind irracional representa de certo modo um irracional. A fim de tirarmos partido disto, que, para começar, não é mais do que uma vaga impressão, devemos encontrar algum meio de extrair daí uma definição precisa; e, para isso, desenganar a nossa mente da ideia de que um irracional deve ser o limite de um

65 [Os termos mais comuns actualmente para fronteira superior e fronteira inferior são supremo (o menor dos majorantes) e infimo (o maior dos minorantes), respectivamente. Ver nota 83, p. 104.]
Introdução à Filosofia Matemática

conceito de razões. Assim como as razões que têm denominador 1 não
são idênticas a inteiros, assim também os números racionais que
podem ser maiores ou menores do que irracionais, ou podem ter por
limites irracionais, não devem ser identificados com as razões. Temos
de definir um novo tipo de números chamados «números reais»; dos
quais alguns serão racionais e alguns irracionais. Os que são racionais
«correspondem» a razões, do mesmo modo pelo qual a razão $n/1$
corresponde ao inteiro n; mas não são a mesma coisa que as razões. A
fim de decidir o que deverão ser, observemos que um irracional é
representado por um corte irracional, e um corte é representado pela
sua secção inferior. Limitemo-nos a cortes nos quais a secção inferior
não tem máximo algum; neste caso chamaremos à secção inferior um
«segmento» [«segmento inicial»]. Então, os segmentos que corres-
pondem a razões são os que consistem de todas as razões menores do
que aquela à qual correspondem, e que constitui a sua fronteira,
enquanto os que representam irracionais são os que não têm fronteira
alguma. Os segmentos, tanto os que têm como os que não têm
fronteira, são tais que, de quaisquer dois contidos numa cadeia, um
deve ser parte do outro; portanto, eles podem ser todos arranjados
numa cadeia pela relação de todo e parte. Uma cadeia na qual há
lacunas dedekindianas, isto é, na qual há segmentos que não têm
fronteira alguma, dará origem a mais segmentos do que elementos,
porquanto cada segmento definirá um segmento que tem este elemento
para fronteira, e então os segmentos sem fronteiras serão em excesso.

Estamos agora em situação de poder definir número real e número
irracional.

Um «número real» é um segmento da cadeia de razões por ordem
de grandeza.

Um «número irracional» é um segmento da cadeia de razões que
não tem fronteira.

Um «número real racional» é um segmento da cadeia de razões que
tem uma fronteira.

Assim, um número real racional consiste de todas as razões
menores do que certa razão e é o número real racional correspondente
àquela razão. O número real 1, por exemplo, é a classe das fracções
próprias.

Nos casos em que naturalmente supusemos que um número racion-
mal deveria ser o limite de um conjunto de razões, a verdade é que ele
é o limite do conjunto de números reais racionais correspondentes na
cadeia de segmentos ordenados pela relação de todo e parte. Por
exemplo, $\sqrt{2}$ é o limite superior de todos os segmentos da cadeia de
razões que correspondem a razões cujos quadrados são menores do
VII. Números racionais, reais e complexos

que 2. Mais simplesmente ainda, \(\sqrt{2} \) é o segmento que consiste de todas as razões cujos quadrados são menores do que 2.

É fácil demonstrar que a cadeia dos segmentos de qualquer cadeia é dedekindiana. Porque, dado qualquer conjunto de segmentos, a sua fronteira será a sua união, isto é, a classe de todos os elementos que pertencem a pelo menos um segmento do conjunto.66

A definição dos números reais acima é um exemplo de «construção» em contraste com «postulação», de que tivemos um outro exemplo na definição dos números cardinais. A grande vantagem deste método é que não exige nenhuma suposição nova, mas permite-nos prosseguir dedutivamente a partir do aparato original da lógica.

Não há dificuldade alguma em definir adição e multiplicação para os números reais conforme acima definidos. Dados dois números reais \(\mu \) e \(\nu \), sendo cada um uma classe de razões, some-se qualquer membro de \(\mu \) com qualquer membro de \(\nu \) segundo a regra para a adição de razões. Forme-se a classe de todas as somas assim obtidas pela variação dos membros tomados em \(\mu \) e \(\nu \). Isto dá uma nova classe de razões, sendo fácil demonstrar que esta nova classe é um segmento da cadeia de razões. Chamamos-lhe a soma de \(\mu \) e \(\nu \). Podemos enunciar a definição mais sinteticamente como se segue:

A soma aritmética de dois números reais é a classe das somas aritméticas de um membro de um e um membro do outro, escolhidos de todas as maneiras possíveis.

Podemos definir o produto aritmético de dois números reais exatamente da mesma maneira, multiplicando um membro de um por um membro de outro, de todas as maneiras possíveis. A classe de razões assim gerada é definida como sendo o produto dos dois números reais. (Em todas estas definições, a cadeia das razões deve ser suposta como excluindo zero e infinito).

Não há dificuldade alguma em estender as nossas definições aos números reais positivos e negativos e à sua adição e multiplicação.

Resta dar a definição dos números complexos.

Os números complexos, embora capazes de uma interpretação geométrica, não são exigidos pela geometria da mesma forma imperativa que os irracionais. Um número «complexo» significa um número que envolve a raiz quadrada de um número negativo, seja ele inteiro, fraccionário ou real. Como o quadrado de um número negativo é

Introdução à Filosofia Matemática

positivo, um número cujo quadrado deva ser negativo tem de ser um número de uma nova espécie de números. Usando a letra i para a raiz quadrada de -1, qualquer número que envolva a raiz quadrada de um número negativo pode ser expresso sob a forma $x + yi$, em que x e y são reais. A parte yi é chamada parte «imaginária» deste número, sendo x a parte «real». (A razão para a expressão «números reais» é para contrastar com aqueles que são «imaginários»). Os números complexos foram usados familiarmente pelos matemáticos durante muito tempo, a despeito da ausência de qualquer definição precisa. Foi simplesmente suposto que eles obedeciam às regras aritméticas usuais, e o seu emprego, com base nesta suposição, foi vantajoso. São menos necessários à geometria do que à álgebra e à análise. Desejamos poder dizer, por exemplo, que toda a equação do 2.º grau tem duas raízes e que toda equação cúbica tem três e assim por diante. Mas se nos confinarmos aos números reais, uma equação como $x^2 + 1 = 0$ não tem raízes, e uma equação como $x^3 - 1 = 0$ tem apenas uma. Todas as generalizações dos números foram primeiramente apresentadas como necessárias a algum problema simples: os números negativos foram necessários para que a subtração fosse sempre possível, porquanto, de outro modo, $a - b$ não teria sentido algum se a fosse menor do que b; as frações tornaram-se necessárias para que a divisão fosse sempre possível; e os números complexos são necessários para que a extracção de raízes e a solução de equações possam ser sempre possíveis. Mas as extensões do conceito de número não são criadas pela mera necessidade que se tenha delas: são criadas pela definição e é para a definição dos números complexos que devemos voltar agora a nossa atenção.

Um número complexo pode ser considerado e definido simplesmente como um par ordenado de números reais. Aqui, como noutras pontos, muitas definições são possíveis. É somente necessário que a definição adoptada conduza a certas propriedades. No caso dos números complexos, se eles são definidos como pares ordenados de números reais, garantisimos logo de uma vez algumas das propriedades exigidas, a saber, as de que dois números reais são necessários para determinar um número complexo, de que de entre estes podemos distinguir um primeiro e um segundo, e de que dois números complexos só são idênticos quando o primeiro número real envolvido num deles é igual ao primeiro envolvido no segundo, e o segundo igual ao

67 [Seria mais correcto estipular que i é uma das raízes quadradas de -1, fixada uma vez por todas, visto existirem exactamente duas: $i^2 = (-i)^2 = -1$.]

VII. Números racionais, reais e complexos

segundo. O que é desejado para lá disso pode ser garantido pela definição das regras de adição e multiplicação. Devemos ter:

\[(x + yi) + (x' + y'i) = (x + x') + (y + y')i,\]
\[(x + yi)(x' + y'i) = (xx' - yy') + (xy' + x'y)i.\]

Assim, definiremos que, dados dois pares ordenados de números reais, \((x, y)\) e \((x', y')\), a sua soma será o par \((x + x', y + y')\) e o seu produto será o par \((xx' - yy', xy' + x'y)\). Com estas definições garantiremos para os nossos pares ordenados as propriedades que desejamos. Por exemplo, tome-se o produto de dois pares \((0, y)\) e \((0, y')\). Este produto será, segundo a regra acima, o par \((-yy', 0)\). Assim, o quadrado do par \((0, 1)\) será o par \((-1, 0)\). Mas os pares nos quais o segundo termo é 0 são os que, de acordo com a nomenclatura usual, têm a sua parte imaginária igual a zero; na notação \(x + yi\), eles são \(x + 0i\), que é natural escrever simplesmente \(x\). Assim como é natural (mas errôneo) identificar com inteiros as razões cujo denominador é a unidade, também é natural (mas errôneo) identificar com números reais os números complexos cuja parte imaginária é zero. Embora isto seja um erro teórico, é uma conveniência prática; \(x + 0i\) pode ser substituído simplesmente por \(x\) e \(0 + yi\) por \(yi\), desde que não nos esqueçamos de que \(ix\) não é realmente um número real, mas um caso especial de um número complexo. E, quando \(y = 1\), \(yi\) pode, naturalmente, ser substituído por \(i\). Assim, o par \((0, 1)\) é representado por \(i\) e o par \((-1, 0)\) é representado por \(-1\). Acontece que as nossas regras de multiplicação tornam o quadrado de \((0, 1)\) igual a \((-1, 0)\), isto é, o quadrado de \(i\) é \(-1\). Era isto o que desejávamos garantir. Assim, as nossas asserções servem todos os propósitos necessários.

É fácil dar uma interpretação geométrica dos números complexos na geometria plana. Este assunto foi agradavelmente exposto por W. K. Clifford no seu Common Sense of the Exact Sciences [1885], um livro de grande mérito, porém escrito antes de a importância das definições puramente lógicas ser percebida.

Os números complexos de ordem superior, embora muito menos úteis e importantes do que os que definimos, têm certas aplicações, que não são destituídas de importância, em geometria, como pode ser visto, por exemplo, na Universal Algebra [1898] do Dr. Whitehead. A definição de números complexos de ordem \(n\) é obtida por uma extensão óbvia da definição que demos. Definimos um número complexo de ordem \(n\) como uma relação de um-para-muitos cujo domínio consiste de certos números reais e cujo domínio inverso
consiste dos inteiros de 1 a \(n\). Isto é o que seria ordinariamente indicado pela notação \((x_1, x_2, x_3, \ldots, x_n)\), em que os índices denotam uma correspondência com os inteiros usados como índices e a correspondência é de um-para-muitos, não necessariamente de um-para-um, porque \(x_r\) e \(x_s\) podem ser iguais quando \(r\) e \(s\) não o sejam.

A definição acima, com uma regra de multiplicação apropriada, servirá para todos os propósitos para os quais os números complexos de ordem superior são necessários.

Completámos agora a nossa recensão das extensões do conceito de número que não envolvem o infinito. A aplicação de números a colecções infinitas será o nosso próximo assunto.

68 Ver *Principles of Mathematics*, §360, p. 379.
CAPÍTULO VIII

Números cardinais infinitos

A definição dos números cardinais que demos no Cap. II foi aplicada, no Cap. III, aos números finitos, isto é, aos números naturais comuns. A estes, demos o nome de «números indutivos», porque constatámos que devem ser definidos como números que obedecem à indução matemática a partir de 0. Mas ainda não considerámos colecções que não têm um número indutivo de elementos, nem tão-pouco indagámos se se pode dizer que tais colecções têm um número [cardinal]. Trata-se de um problema antiquíssimo que foi resolvido nos nossos próprios dias, principalmente por Georg Cantor. Neste capítulo, tentaremos explicar a teoria dos números cardinais transfinitos ou infinitos, exactamente da maneira como ela resultou de uma combinação das suas descobertas com as de Frege e com a teoria lógica dos números.

Não se pode considerar como certa a existência factual de quaisquer colecções infinitas no universo. A suposição de que existem é o que chamamos «axioma do infinito». Embora sejam naturalmente sugeridas várias maneiras pelas quais podemos esperar demonstrar este axioma, há razão para temer que sejam todas falaciosas e que não haja motivo lógico conclusivo para acreditarmos na sua veracidade. Ao mesmo tempo, também não há, certamente, razão lógica alguma contra as colecções infinitas, e justifica-se, portanto, em lógica, investigar as consequências da hipótese de que tais colecções existem. A forma prática desta hipótese é, para os nossos propósitos presentes, a suposição de que, se n é um número indutivo qualquer, n não é igual a $n + 1$. Há várias subtilezas na identificação desta forma da nossa suposição com a forma que afirma a existência de colecções infinitas; mas deixaremos tais subtilezas de lado até que, em capítulo posterior, consideremos o axioma do infinito em si. Admitiremos apenas, de momento, que, se n é um número indutivo, n não é igual a $n + 1$. Isto está contido na suposição de Peano de que não há dois números indutivos com um mesmo sucessor; pois, se $n = n + 1$, então $n - 1$ e n têm o mesmo sucessor, a saber, n. Assim, não estamos admitindo
coisa alguma que não estivesse contido nas proposições primitivas de Peano.69

Consideremos agora a colecção dos próprios números indutivos. Trata-se de uma classe perfeitamente bem definida. Em primeiro lugar, um número cardinal é um conjunto de classes que são equipotentes entre si e não são equipotentes a qualquer outra coisa que não a elas mesmas. Definimos, então, como «números indutivos» aqueles cardinais que pertencem à posteridade de 0 com respeito à relação de n para n + 1, isto é, aqueles que possuem todas as propriedades possuídas por 0 e pelos sucessores dos que as possuem, onde «sucessor» de n significa o número n + 1. Assim, a classe dos «números indutivos» está definida com precisão. De acordo com a nossa definição geral de número cardinal, o número de elementos da classe dos números indutivos deve ser definido como «todas as classes que são equipotentes à classe dos números indutivos» — isto é, este conjunto de classes é o número dos números indutivos, em conformidade com as nossas definições.

Ora, é fácil ver que este número não é um dos números indutivos. Se n for um número indutivo qualquer, o número de números de 0 a n (ambos incluídos) será n + 1; portanto, o número total de números indutivos é maior do que n, seja n qual for. Se dispusermos os números indutivos numa cadeia por ordem de grandeza, esta cadeia não terá último elemento; mas se n for um número indutivo, toda a cadeia cujo campo tiver n elementos terá um último elemento, como é fácil demonstrar. Tais diferenças podem ser multiplicadas ad lib. Assim, o número de números indutivos é um novo número, diferente de todos eles, não possuindo todas as propriedades indutivas. Pode acontecer que 0 tenha uma determinada propriedade e que se n a tiver, também n + 1 a tenha, mas, no entanto, este novo número não a tenha. As dificuldades que por tanto tempo retardaram a teoria dos números infinitos foram em grande parte motivadas pelo facto de, pelo menos, algumas das propriedades indutivas terem sido erroneamente consideradas como devendo pertencer necessariamente a todos os números; na verdade, pensou-se que não podiam ser negadas sem cair em contradição. O primeiro passo para entender os números infinitos consiste em se perceber quão erróneo é este ponto de vista.

69 [Sabemos que qualquer sistema de entes que satisfaça os axiomas de Peano é infinito, mas não devemos perder de vista que Russell não os adoptou como tais. Assim, para avaliação da tese logicista de Russell, coloca-se a questão de saber se os axiomas de Peano são de natureza puramente lógica.]
VIII. Números cardinais infinitos

A mais notável e desconcertante diferença entre um número indutivo e este novo número é que este novo número não se altera ao ser-lhe adicionado ou subtraído 1, ou ao ser elevado ao dobro ou reduzido à metade ou ao ser submetido a qualquer das várias operações que consideramos tornar necessariamente um número maior ou menor. O facto de não ser alterado pela adição de 1 foi usado por Cantor para a definição do que ele chama números cardinais «transfinitos»; mas, por várias razões, algumas das quais aparecerão com a continuação, é melhor definir um número cardinal infinito como um número que não possui todas as propriedades indutivas, isto é, simplesmente como um número que não é um número indutivo. Não obstante, a propriedade de não ser alterado pela adição de 1 é muito importante e devemos demorar-nos nela por algum tempo.

Dizer que uma classe tem um número que não se altera pela adição de 1 é o mesmo que dizer que, se tomarmos um elemento \(x \) que não pertença à classe, poderemos encontrar uma relação de um-para-um cujo domínio é a classe e cujo domínio inverso é obtido pela adição de \(x \) à classe. Porque, neste caso, a classe é similar à união dela própria com o elemento \(x \), isto é, a uma classe com um elemento extra; de modo que ela tem o mesmo número que uma classe com um elemento extra, e, se \(n \) for este número, teremos \(n = n + 1 \). Neste caso, também deveremos ter \(n = n - 1 \), isto é, haverá relações de um-para-um cujos domínios consistem de toda a classe e cujo domínio inverso consiste de toda a classe menos um elemento. Pode-se demonstrar que os casos em que isto acontece são os mesmos que os casos aparentemente mais gerais, nos quais alguma parte (própria) pode ser colocada em correspondência de um-para-um com o todo. Quando isto pode ser feito, pode-se dizer que a correspondência pela qual é feito «reflecte» toda uma classe numa parte de si mesma; por esta razão, tais classes serão chamadas «reflexivas». Assim:

Uma classe «reflexiva» é aquela que é similar a uma sua parte própria. (Uma «parte própria» é uma parte diferente do todo).\(^{70}\)

Um número cardinal «reflexivo» é o número cardinal de uma classe reflexiva.

Temos de considerar agora esta propriedade de reflexividade.

\(^{70}\) [Dedekind (Was sin und was sollen die Zahlen?, 1888) definiu a infinitude de uma classe mediante a reflexividade neste sentido (equipotência a uma parte própria), daí usar-se a expressão «infinita à Dedekind», aplicada a conjuntos e classes russelianas, como sinónima de «reflexiva», mas a ideia de reflexividade para estabelecer a infinitude parece ter sido parcialmente antecipada por B. Bolzano em 1851 (Paradoxien des Unendlichen)]
Um dos exemplos mais impressionantes de uma «reflexão» é o do mapa de Royce\footnote{Josiah Royce (1855-1916), filósofo idealista americano, autor, entre outros, de The World and the Individual (2 vols. 1900-01), que contém a história do mapa de Inglaterra.}: ele imagina ter ficado decidido desenhar um mapa da Inglaterra sobre uma parte da sua superfície. Um mapa preciso estabelece uma correspondência de um-para-um perfeita com o original; assim, o mapa a que nos referimos, que é uma parte, tem uma relação de um-para-um com o todo e deve conter o mesmo número de pontos que o todo, o qual deve, portanto, ser um número reflexivo. Royce está interessado no facto de o mapa, caso correcto, dever conter um mapa do mapa, o qual, por sua vez, deverá conter um mapa do mapa do mapa e assim por diante \emph{ad infinitum}. Este ponto é interessante mas não precisa ocupar-nos neste momento. Na verdade, faremos bem em passar das ilustrações pitorescas para outras mais completamente definidas, e, com este propósito, nada melhor do que considerar a própria cadeia dos números.

A relação de para, limitada aos números indutivos, é de um-para-um, tem para seu domínio a totalidade dos números indutivos, e todos, excepto 0, para seu domínio inverso. Assim, a classe de todos os números indutivos é equipotente aquilo em que ela se torna quando omitimos o 0. Consequentemente, é uma classe «reflexiva» de acordo com a definição, e o número dos seus elementos é um número «reflexivo». Do mesmo modo, a relação de para 2n, limitada aos números indutivos, é de um-para-um, tem todos os números indutivos para domínio e somente os números indutivos pares para domínio inverso. Portanto, o número total de números indutivos é o mesmo que o número dos números indutivos pares. Esta propriedade foi usada por Leibniz (e muitos outros) como uma prova de que os números infinitos são impossíveis; julgou-se auto-contraditório que «a parte fosse igual ao todo».\footnote{Recorde-se que um dos «axiomas» ou «noções comuns» de Euclides, nos Elementos, o axioma IX, afirma: «O todo é maior do que qualquer das suas partes.»} Mas esta é uma daquelas frases cuja plausibilidade depende de uma ambiguidade despercebida: a palavra «igual» tem muitos significados, mas, se considerarmos que significa o que chamamos «equipotente», não haverá contradição alguma, porquanto uma coleção infinita pode perfeitamente ter partes próprias que lhe são equipotentes. Os que consideram ser isto impossível, atribuíram aos números em geral, em geral inconscientemente, propriedades que só podem ser demonstradas por indução matemática e que somente a
VIII. Números cardinais infinitos

sua familiaridade nos leva, erroneamente, a considerá-las como verdadeiras para além do âmbito do finito.

Sempre que possamos «reflectir» uma classe numa sua parte, a mesma relação necessariamente reflectirá esta parte numa parte menor e assim por diante ad infinitum. Como acabámos de ver, podemos, por exemplo, reflectir todos os números indutivos nos números pares; podemos, pela mesma relação (a de n para $2n$), reflectir os números pares nos múltiplos de 4, estes nos múltiplos de 8 e assim por diante. Trata-se do análogo abstracto do problema do mapa de Royce. Os números pares são um «mapa» de todos os números indutivos; os múltiplos de 4 são um mapa do mapa; os múltiplos de 8 são um mapa do mapa do mapa e assim por diante. Se tivéssemos aplicado o mesmo processo à relação de n para $n + 1$, o nosso «mapa» teria consistido de todos os números indutivos excepto 0; o mapa do mapa teria consistido dos números de 2 em diante, o mapa do mapa do mapa, de todos os de 3 em diante e assim sucessivamente. A principal utilidade de tais ilustrações é produzir a familiarização com a ideia de classes reflexivas, de modo que proposições aritméticas aparentemente paradoxais possam ser prontamente traduzidas na linguagem das reflexões e classes, nas quais o aspecto paradoxal é muito menor.

Será útil darmos uma definição do número que é o número dos cardinais indutivos. Com esta finalidade, definiremos primeiro o tipo de cadeia exemplificada pelos cardinais indutivos por ordem de grandeza. O tipo de cadeias chamadas «progressões» já foi considerado no Cap. I. É uma cadeia que pode ser gerada por uma relação de consecutividade: todo o membro da cadeia tem de ter um sucessor, mas terá de haver apenas um que não tem predecessor e todo o membro da cadeia tem de estar na posteridade deste elemento com respeito à relação «predecessor imediato». Estas características podem ser condensadas na seguinte definição73:

Uma «progressão» é uma relação de um-para-um tal que existe apenas um elemento pertencente ao domínio mas não ao domínio inverso, e o domínio é idêntico à posteridade deste elemento.

É fácil ver que uma progressão, assim definida, satisfaz os cinco axiomas de Peano. O elemento pertencente ao domínio mas não ao domínio inverso será o que ele chama «0»; o elemento com o qual um elemento tem a relação de um-para-um será o «sucessor» do elemento; e o domínio da relação de um-para-um será o que ele chama «número». Tomando os seus cinco axiomas por ordem, temos as seguintes traduções:

(1) «1 é um número» torna-se: «O membro do domínio que não é
um membro do domínio inverso é um membro do domínio». Isto
é equivalente à existência de um tal membro, que é dada na nossa
definição. Chamaremos a este membro «primeiro elemento».

(2) «O sucessor de qualquer número é um número» torna-se: «O
elemento com o qual um determinado membro do domínio tem
a relação em questão é novamente um membro do domínio». Isto
é provado como se segue: De acordo com a definição, todo o membro
do domínio é um membro da posteridade do primeiro elemento;
portanto, o sucessor de um membro do domínio deve ser um membro
da posteridade do primeiro elemento (porque a posteridade de um
elemento contém sempre os seus próprios sucessores, de acordo com a
definição geral de posteridade), e, portanto, um membro do domínio,
porque, de acordo com a definição, a posteridade do primeiro elemen-
to é a mesma que a do domínio.

(3) «Não há dois números com um mesmo sucessor». Isto é
o mesmo que dizer que a relação é de um-para-muitos, o que de facto
ela é por definição (por ser de um-para-um).

(4) «1 não é o sucessor de número algum» torna-se: «O primeiro
elemento não é membro do domínio inverso», o que é, novamente, um
resultado imediato da definição.

(5) Isto é a indução matemática, e torna-se: «Todo o membro do
domínio pertence à posteridade do primeiro elemento», que é parte da
nossa definição.

Assim, as progressões, conforme as definimos aqui, têm as cinco
propriedades formais das quais Peano deduz a aritmética. É fácil
demonstrar que duas progressões são «similares» no sentido definido
para similaridade de relações no Cap. VI. Podemos, naturalmente,
derivar uma relação serial a partir da relação de um-para-um pela qual
definimos uma progressão: o método usado é o que foi explicado no
Cap. IV e a relação é a de um elemento para um membro da sua
própria posteridade com respeito à relação de um-para-um original.

Duas relações transitivas assimétricas que geram progressões são
similares, pelas mesmas razões por que as relações de um-para-um
correspondentes são similares. A classe de todas estas geradoras
transitivas de relações é um «número serial» no sentido apresentado
no Cap. VI; é, na verdade, o menor dos números seriais infinitos, o
número que Cantor designou ω e assim o tornou famoso.

Mas, de momento, estamos interessados nos números *cardinais*.
Como duas progressões são relações similares, segue-se que os seus
domínios (ou seus campos, que são a mesma coisa que os seus
domínios) são classes equipotentes. Os domínios das progressões
formam um número cardinal, porquanto se pode provar facilmente que
toda a classe similar ao domínio de uma progressão é, ela própria, o
domínio de uma progressão. Este número cardinal é o menor dos
números cardinais infinitos; é aquele que Cantor designou pela letra
hebraica álefe, com o sufixo «0» para o distinguir dos cardinais
infinitos maiores, os quais têm outros índices. Assim, o nome do
menor dos cardinais infinitos é \aleph_0.

Dizer que uma classe tem \aleph_0 elementos é o mesmo que dizer que
ela é um membro de \aleph_0, e isto equivale a dizer que os membros da
classe podem ser dispostos numa progressão. É óbvio que uma
progressão permanece uma progressão se dela omitirmos um número
finito de elementos, ou um sim e um não, ou todos excepto cada
décimo ou cada centésimo elemento. Este método de reduzir uma
progressão não faz com que cesse de ser uma progressão, e, portanto,
ninguém diminui o número dos seus elementos, que continua a ser \aleph_0. Na
verdade, qualquer selecção extraída de uma progressão é uma
progressão se não tiver último elemento, por mais espaçadamente que
possa ser distribuída. Tome-se, por exemplo, os números induitivos da
forma n^m, ou n^n. Tais números vão tornando-se muito raros nas
partes superiores das cadeias numéricas e, no entanto, há tantos deles
quantos os números induitivos no total, a saber, \aleph_0.

Por outro lado, podemos adicionar elementos aos números induitivos
ssem aumentarmos o seu número. Veja-se, por exemplo, as razões.
Poder-se-á pensar que deva haver muito mais razões do que inteiros,
porquanto as razões cujo denominador é 1 correspondem a inteiros e
estas parecem constituir apenas uma parte muito pequena das razões.
Mas, na realidade, o número de razões (ou fracções) é exactamente o
mesmo que o número de números induitivos, a saber, \aleph_0. Isto vê-se
facilmente arranjando as razões numa cadeia de acordo com o seguinte
plano: se a soma do numerador com o denominador de uma for menor
do que a da outra, coloque-se a primeira antes da outra; se a soma for
igual nas duas, coloque-se primeiro a que tenha o numerador menor.
Isto dá-nos a cadeia:

1, 1/2, 2, 1/3, 3, 1/4, 2/3, 3/2, 4, 1/5, ...

Esta cadeia é uma progressão, e todas as razões ocorrem nela mais
cedo ou mais tarde. Portanto, podemos dispor todas as razões numa
progressão e o seu número é, pois, \aleph_0.

Nem todas as coleções infinitas têm, porém, \aleph_0 elementos. O
número de números reais, por exemplo, é maior do que \aleph_0; ele é, na
realidade, 2^{\aleph_0}, não sendo difícil demonstrar que 2^n é maior do que n
mesmo quando n é infinito. A maneira mais fácil de provar isto é
provar, primeiro, que, se uma classe tem \(n \) membros, ela contém \(2^n \) subclasses — por outras palavras, que há \(2^n \) maneiras de selecionar alguns dos seus membros (inclusive os casos extremos em que selecionamos todos ou nenhum); e, segundo, que o número de subclasses de uma classe é sempre maior que o número de membros da classe. Destas duas proposições, a primeira é familiar no caso dos números finitos, não sendo difícil estendê-la aos números infinitos. A prova da segunda é tão fácil e tão instrutiva que a apresentaremos a seguir.

Em primeiro lugar, é claro que o número de subclasses de uma determinada classe (digamos, \(\alpha \)) é, pelo menos, tão grande quanto o número dos seus membros, porquanto cada membro constitui uma subclass\(^74\) e temos, assim, uma correspondência de todos os membros com algumas das subclasses. Resulta que, se o número de subclasses não é igual ao número de membros, então tem de ser maior. Ora, é fácil provar que o número não é igual mostrando que, dada qualquer relação de um-para-um cujo domínio são os membros e cujo domínio inverso está contido no conjunto das subclasses, há pelo menos uma subclass que não pertence ao domínio inverso. A prova é a seguinte\(^75\): quando é estabelecida uma correspondência \(R \) de um-para-um entre todos os membros de \(\alpha \) e algumas das subclasses de \(\alpha \), pode acontecer que um determinado membro \(x \) corresponda a uma subclass da qual ele é membro; ou pode sucessar que \(x \) corresponda a uma subclass da qual não seja membro. Formemos a classe (digamos, \(\beta \)) dos membros \(x \) que correspondem a subclasses das quais não são membros.\(^76\) Esta classe é uma subclass de \(\alpha \) e não é a correspondente de nenhum membro de \(\alpha \). Porque, tomando primeiro os membros de

\(^{74}\) [Quer dizer: cada membro \(x \) de \(\alpha \) dá origem à subclass singular \{\(x \)\} cujo único elemento é \(x \).]

\(^{76}\) [Designando por \(R_x \) a subclass correspondente a \(x \) por \(R \), ter-se-á \(\beta = \{ x \in \alpha : x \not\in R_x \} \). Então, para todo \(x \) em \(\alpha \), \(x \in \beta \) se e só se \(x \not\in R_x \), logo \(x \not\in \beta \) se e só se \(x \in R_x \).]
VIII. Números cardinais infinitos

β, cada um deles corresponde (pela definição de β) a alguma subclass da qual não é membro, e, portanto, não corresponde a β. Tomando, a seguir, os elementos que não são membros de β, cada um deles corresponde (pela definição de β) a alguma subclass da qual é membro, também não estando, portanto, relacionado com β. Assim, nenhum membro de α corresponde a β. Como R é uma correspondência arbitrária um-para-um dos membros de α com algumas subclasses de α, segue-se que não há correspondência alguma de todos os membros com todas as subclasses. Não importa, para a prova, se β tem ou não algum membro: no caso de não ter, o que acontece é que a subclass omitida é a classe vazia. Em qualquer dos casos, o número de subclasses não é igual ao número de membros, e, portanto, de acordo com o que foi dito antes, é maior. Combinando isto com a proposição de que, se n é o número de membros, 2n é o número de subclasses, temos o teorema de que 2n é sempre maior do que n, mesmo quando n é infinito.

Segue desta proposição que não há um máximo para os números cardinais infinitos. Por maior que seja um número infinito n, 2n ainda será maior. A aritmética dos números infinitos é surpreendente enquanto não se torna familiar. Temos, por exemplo:

\[\aleph_0 + 1 = \aleph_0, \]
\[\aleph_0 + n = \aleph_0, \text{ onde } n \text{ é um número indutivo qualquer}, \]
\[\aleph_0^2 = \aleph_0. \]

(Isto resulta do exemplo das razões [p. 91], pois, como uma razão é determinada por um par de números indutivos, é fácil ver que o número de razões é o quadrado do número de números indutivos, isto é, \(\aleph_0^2 \); mas vimos que isto também é igual a \(\aleph_0 \).)

\[\aleph_0^n = \aleph_0, \text{ onde } n \text{ é um número indutivo qualquer } [\neq 0]. \]

(Isto resulta de \(\aleph_0 \times \aleph_0 = \aleph_0 \) por indução, pois se \(\aleph_0^n = \aleph_0, \) então \(\aleph_0^{n+1} = \aleph_0^2 = \aleph_0 \).) Mas

\[2^{\aleph_0} > \aleph_0. \]

De facto, como veremos adiante, \(2^{\aleph_0} \) é um número muito importante, isto é, o número de elementos de uma cadeia «contínua» no sentido em que esta palavra é usada por Cantor. Admitindo que o espaço e o tempo são contínuos neste sentido (como se faz vulgarmente na geometria analítica e na cinemática), este número será o número de pontos no espaço ou de instantes de tempo; também será o
número de pontos em qualquer porção finita do espaço, seja ela uma linha, uma superfície ou um sólido. A seguir a \(\mathbb{N}_0 \), \(2^{\mathbb{N}_0} \) é o mais importante e interessante dos números cardinais infinitos.

Conquanto a adição e a multiplicação de números cardinais sejam sempre possíveis, a subtração e a divisão não dão resultados definidos, não podendo, portanto, ser empregadas como na aritmética elementar. Vejamos o caso da subtração, para começar: enquanto o número subtraído for finito, tudo irá bem; se o outro número for reflexivo, não haverá alteração no resultado. Assim, \(\mathbb{N}_0 - n = \mathbb{N}_0 \), se \(n \) é finito; até aqui, a subtração dá um resultado perfeitamente definido. Mas o mesmo não se dá quando subtraímos \(\mathbb{N}_0 \) de si mesmo; podemos obter então qualquer resultado de 0 até \(\mathbb{N}_0 \). Isto é facilmente visto em exemplos. Tire-se dos números indutivos as seguintes colecções de elementos:

1. Todos os números indutivos — resto, zero.
2. Todos os números indutivos de \(n \) em diante — resto, os números de 0 a \(n - 1 \), compreendendo ao todo \(n \) elementos.
3. Todos os números ímpares — resto, todos os números pares, compreendendo \(\mathbb{N}_0 \) elementos.

Tudo isto são maneiras diferentes de subtrair \(\mathbb{N}_0 \) de \(\mathbb{N}_0 \) e todas dão resultados diferentes.

No que diz respeito à divisão, são produzidos resultados muito semelhantes como consequência do facto de \(\mathbb{N}_0 \) não se alterar quando multiplicado por 2 ou 3 ou qualquer número finito \(n \), ou por \(\mathbb{N}_0 \). Segue que \(\mathbb{N}_0 \) dividido por \(\mathbb{N}_0 \) pode ter qualquer valor de 1 até \(\mathbb{N}_0 \).

Da ambiguidade da subtração e da divisão resulta que os números negativos e as razões não podem ser estendidas aos números infinitos. A adição, a multiplicação e a exponenciação processam-se de maneira satisfatória, mas as operações inversas — subtração, divisão e extração de raízes — são ambíguas e as noções que delas dependem falham quando se trata de números infinitos.

A indução matemática é a característica pela qual definimos a finitude, isto é, definimos um número como finito quando ele obedece à indução matemática a partir de 0, e uma classe como finita quando o seu número é finito. Esta definição dá o tipo de resultado que se deve esperar de uma definição, a saber, o de que os números finitos são aqueles que ocorrem na cadeia numérica comum 0, 1, 2, 3,... Mas, no presente capítulo, os números infinitos que discutimos revelaram-se não apenas não-indutivos: revelaram-se também reflexivos. Cantor usou a reflexividade como definição de infinito, e acreditou que ela era equivalente à não-indutividade; equivale a dizer, acreditava que toda a classe e todo o cardinal fossem ou indutivos ou reflexivos. Isto
pode ser verdade, e pode até ser susceptível de ser provado; mas as provas propostas até agora por Cantor e outros (inclusive por este autor em dias passados) são falaciosos por razões que serão explicadas quando considerarmos o «axioma multiplicativo».77 De momento, não se sabe se há classes e cardinais que não sejam nem reflexivos nem indutivos. Se \(n \) fosse um tal cardinal, não teríamos \(n = n + 1 \), mas \(n \) não seria um dos «números naturais» e faltar-lhe-iam algumas das propriedades indutivas. Todas as classes e todos os cardinais conhecidos são reflexivos; mas por enquanto é bom conservarmos a mente aberta quanto à existência de exemplos, até agora desconhecidos, de classes e cardinais que não sejam nem reflexivos nem indutivos. Entretanto, adoptamos as seguintes definições:

As classes e os cardinais finitos são os que são indutivos.

As classes e os cardinais infinitos são aqueles que não são indutivos. Todas as classes e todos os cardinais reflexivos são infinitos; mas não se sabe no momento se todas as classes e todos os cardinais são reflexivos. Voltaremos a este assunto no Cap. XII.

77 [A observação é talvez excessiva, se tivermos em conta o grande nível de aceitação do axioma multiplicativo (ou axioma da escolha) nas matemáticas modernas. Nos anos 60 foi efectivamente demonstrado que este axioma é essencial para demonstrar a referida equivalência. Sem o referido axioma, poderão existir classes (e cardinais) reflexivas que não são indutivas, mas prova-se sem aquele axioma que toda a classe (ou cardinal) indutiva é reflexiva.]
CAPÍTULO IX

Cadeias infinitas e ordinais

Uma «cadeia infinita» pode ser definida como uma cadeia cujo campo é uma classe infinita. Já tivemos ocasião de considerar um tipo de cadeia infinita, a saber, as progressões. Neste capítulo, consideraremos o assunto de modo mais geral.

A característica mais notável de uma cadeia infinita é o facto de o seu número serial poder ser alterado pelo simples rearranjo dos seus termos. A este respeito, há uma certa oposição entre números cardinais e seriais. É possível manter inalterado o número cardinal de uma classe reflexiva apesar de se acrescentar elementos a ela; por outro lado, é possível alterar o número serial de uma cadeia sem acrescentar ou subtrair quaisquer elementos, pelo mero rearranjo. Ao mesmo tempo, no caso de uma cadeia infinita qualquer, e também com os cardinais, é possível acrescentar elementos sem alterar o número serial: tudo depende da maneira pela qual eles são acrescentados.

Para tornar as coisas mais claras, é melhor começarmos com exemplos. Consideremos primeiro vários tipos de cadeias que podem ser estruturadas com números indutivos arranjados segundo vários padrões. Começamos com a cadeia:

\[1, 2, 3, 4, \ldots n, \ldots, \]

que, como já vimos, representa o menor dos números seriais infinitos, aquele que Cantor designou por \(\omega \). Passemos a refiná-la repetindo indefinidamente a operação de remover para o fim o primeiro número par encontrado. Obtemos assim, uma após outra, as várias cadeias seguintes:

\begin{align*}
1, 3, 4, 5, \ldots n, \ldots 2, \\
1, 3, 5, 6, \ldots n + 1, \ldots 2, 4, \\
1, 3, 5, 7, \ldots n + 2, \ldots 2, 4, 6,
\end{align*}

e assim por diante. Se imaginarmos este processo levado tão longe quanto possível, obteremos finalmente a cadeia:
IX. Cadeias infinitas e ordinais

1, 3, 5, 7, ... 2n + 1, ... 2, 4, 6, 8, ... 2n, ...

na qual temos primeiro os números ímpares e depois todos os números pares.

Os números seriados destas várias cadeias são \(\omega + 1, \omega + 2, \omega + 3, \ldots \omega + 2 \omega \), respectivamente. Cada um destes números é «maior» do que o seu predecessor no seguinte sentido:

Diz-se que um número serial é «maior» do que outro se qualquer cadeia do primeiro contém uma parte do segundo, mas nenhuma cadeia do segundo número contém uma parte do primeiro.

Se compararmos as duas cadeias:

1, 2, 3, 4, ... n, ...
1, 3, 4, 5, ... n + 1, ... 2,

veremos que a primeira é similar à parte da segunda que omite o último termo, a saber, o número dois, mas a segunda não é similar a parte alguma da primeira. (Isto é óbvio e facilmente demonstrável). Assim, a segunda cadeia tem um número serial maior do que o da primeira, de acordo com a definição, isto é, \(\omega + 1 \) é maior do que \(\omega \). Mas se acrescentarmos um termo ao começo de uma progressão em vez de acrescentá-lo ao final, ainda obtemos uma progressão. Assim, \(1 + \omega = \omega \). Portanto, \(1 + \omega \) não é igual a \(\omega + 1 \). Isto é característico da aritmética relacional em geral: se \(\mu \) e \(\nu \) são dois números-de-similaridade, em geral \(\mu + \nu \) não é igual a \(\nu + \mu \). O caso dos ordinais finitos, em que há igualdade, é assaz excepcional.

A cadeia obtida acima, que consistia primeiro de todos os números ímpares, depois dos números pares, tem número serial \(2\omega \). Este número é maior do que \(\omega \) ou \(\omega + n \), com \(n \) finito. Cabe observar que, de acordo com a definição geral da ordem, cada um destes arranjos de inteiros deve ser considerado resultante de alguma relação definida. Por exemplo, aquele que meramente remove 2 para o fim será definido pela seguinte relação: «\(x \) e \(y \) são inteiros finitos, e, ou \(y \) é dois e \(x \) não é 2, ou então nenhum deles é 2 e \(x \) é menor do que \(y \)». Aquele que coloca primeiro todos os ímpares e depois todos os números pares é definido por: «\(x \) e \(y \) são inteiros finitos, e ou \(x \) é ímpar e \(y \) é par, ou \(x \) é menor do que \(y \) e são ambos ímpares, ou ambos pares». Em geral, não nos daremos ao trabalho de apresentar estas definições futuramente; mas o facto de poderem ser dadas é essencial.

O número que designamos por \(2\omega \), a saber, o número de uma cadeia consistindo de duas progressões, é por vezes designado por \(\omega \cdot 2 \). A multiplicação, como a adição, depende da ordem dos factores:
uma progressão de pares dá uma cadeia como:

\[x_1, y_1, x_2, y_2, x_3, y_3, \ldots, x_m, y_m, \ldots \]

que é ela própria uma progressão; mas um par de progressões dá uma cadeia duas vezes mais longa do que uma progressão. É, portanto, necessário distinguir entre \(2\omega \) e \(\omega \cdot 2 \). Os usos são diferenciados; usamos \(2\omega \) para um par de progressões e \(\omega \cdot 2 \) para uma progressão de pares, e esta decisão governa, naturalmente, a interpretação geral de \(\langle \alpha \cdot \beta \rangle \) quando \(\alpha \) e \(\beta \) são números-de-similaridade: \(\langle \alpha \cdot \beta \rangle \) terá de representar uma soma convenientemente construída de \(\alpha \) relações, cada uma com \(\beta \) elementos.

Podemos prosseguir indefinidamente no processo de rarefazer os números indutivos. Por exemplo, podemos colocar primeiro os números ímpares, depois os seusdobros, depois os dobro destes e assim por diante. Obtemos deste modo a cadeia:

\[1, 3, 5, 7, \ldots; 2, 6, 10, 14, \ldots; 4, 12, 20, 28, \ldots; 8, 24, 40, 56, \ldots \]

da qual o número é \(\omega^2 \), pois é uma progressão de progressões. Qualquer das progressões desta nova cadeia pode, naturalmente, ser rarefeita da mesma maneira que rarefizemos a nossa progressão original. Podemos prosseguir até \(\omega^3, \omega^4, \ldots \) e assim por diante; por mais que prossegamos, poderemos ir sempre mais adiante.

A cadeia de todos os ordinais que pode ser obtida desta maneira, isto é, tudo o que pode ser obtido pela rareficação de uma progressão, é em si mesma mais longa do que qualquer cadeia que possa ser obtida pelo rearranjo dos termos de uma progressão. (Isto não é difícil de demonstrar). Pode-se mostrar que o número cardinal da classe de tais ordinais é maior do que \(\aleph_0 \); é o número a que Cantor chama \(\aleph_1 \). O número ordinal da cadeia de todos os ordinais que pode ser feita a partir de um \(\aleph_0 \), tomados por ordem de grandeza, é chamado \(\omega_1 \). Assim, uma cadeia cujo número ordinal é \(\omega_1 \) tem um campo cujo número cardinal é \(\aleph_1 \).

Podemos prosseguir de \(\omega_1 \) e \(\aleph_1 \) para \(\omega_2 \) e \(\aleph_2 \) por um processo exactamente análogo àquele pelo qual avançámos de \(\omega \) e \(\aleph_0 \) para \(\omega_1 \) e \(\aleph_1 \). E não há nada que nos impeça de avançar indefinidamente desta maneira para novos cardinais e novos ordinais. Não se sabe se \(2^{\aleph_0} \) é igual a qualquer dos cardinais da cadeia dos álefes. Não se sabe sequer se lhes é comparável em grandeza; que saibamos, pode não ser nem
iguais nem maior nem menor do que qualquer dos áleves. Esta questão está ligada ao axioma multiplicativo, o qual trataremos mais tarde.

Todas as cadeias que temos vindo a considerar neste capítulo são chamadas «bem-ordenadas». Uma cadeia bem-ordenada é toda aquela que tem um começo [primeiro elemento] e tem termos consecutivos, bem como um termo imediatamente a seguir a qualquer selecção dos seus termos, desde que haja alguns termos após a selecção. Isto exclui, por outro lado, as cadeias densas, nas quais há termos entre dois quaisquer, e também as cadeias que não têm um começo ou nas quais há subcadeias que não têm começo. A cadeia dos inteiros negativos por ordem de grandeza, que não tem começo mas termina em -1, não é bem-ordenada; mas, tomada na ordem inversa, a começar com -1, é bem-ordenada, e é, na realidade, uma progressão. A definição é:

Uma cadeia «bem-ordenada» é uma cadeia na qual toda a subclasse (excepto, naturalmente, a classe vazia) tem um primeiro termo.

Um número «ordinal» é o número-de-similaridade de uma cadeia bem-ordenada. É, assim, uma espécie de número serial.

Nas cadeias bem-ordenadas, aplica-se uma forma generalizada de indução matemática. Uma propriedade poderá ser dita «transfinitamente hereditária» se, quando pertence a uma certa selecção dos termos de uma cadeia, pertence também ao sucessor imediato destes, desde que este exista. Numa cadeia bem-ordenada, uma propriedade transfinitamente hereditária que pertence ao primeiro termo da cadeia pertence à cadeia inteira. Isto permite demonstrar muitas proposições relativas às cadeias bem-ordenadas, que não são verdadeiras em todas as cadeias.

79 [De maneira mais simples: uma cadeia é bem-ordenada quando todo o subconjunto não vazio do seu campo tem primeiro elemento.]
É fácil dispor os números indutivos em cadeias que não são bem-ordenadas e até dispô-los em cadeias densas. Por exemplo, podemos adoptar o seguinte plano: considere-se as dízimas desde 0,1 (inclusive) até 1 (inclusive), dispostas por ordem de grandeza. Elas formam assim uma cadeia densa; entre duas quaisquer há sempre um número infinito de outras. A seguir, omita-se o zero e a vírgula de antes de cada uma e ter-se-á uma cadeia densa consistindo de todos os inteiros finitos, excepto os divisíveis por 10. Se quisermos incluir os divisíveis por 10 não haverá dificuldade alguma; em vez de começarmos com 0,1 incluiremos todas as dízimas menores do que 1, mas, ao removermos o zero e a vírgula, transferiremos para a direita quaisquer zeros que ocorram no início da parte decimal. Omitindo estes e voltando aos que não têm zero algum no começo da parte decimal, podemos enunciar assim a regra para o arranjo de nossos inteiros: de dois inteiros que não começam com o mesmo dígito, o que começa com o dígito menor vem primeiro. De dois que começam com o mesmo dígito, mas diferem no segundo dígito, o que tem o segundo dígito menor vem primeiro, mas vindo antes de todo aquele sem segundo dígito algum e assim por diante. Em geral, se dois inteiros concordam nos primeiros \(n \) dígitos, mas não no \((n + 1)\)-ésimo, vem primeiro aquele que ou não tem o \((n + 1)\)-ésimo dígito ou tem o \((n + 1)\)-ésimo dígito menor do que o do outro. Como o leitor facilmente poderá constatar, esta regra de disposição dá origem a uma cadeia densa que consiste de todos os inteiros não divisíveis por 10; e, como vimos, não há dificuldade alguma em incluir os que são divisíveis por 10. Segue deste exemplo que é possível construir cadeias densas com \(\aleph_0 \) elementos. De facto, já vimos que há \(\aleph_0 \) razões e que as razões por ordem de grandeza formam uma cadeia densa; temos aqui, assim, outro exemplo. Voltaremos a este assunto no próximo capítulo.

Todas as leis formais usuais de adição, multiplicação e exponenciação são satisfeitas pelos cardinais transfinitos, mas somente algumas são satisfeitas pelos ordinais transfinitos e aquelas que são satisfeitas por estes são satisfeitas por todos os números-de-similaridade. Por «leis formais usuais» queremos dizer as seguintes:

I. Lei comunicativa:

\[a + b = b + a \quad \text{e} \quad a \times b = b \times a. \]

II. Lei associativa:

\[(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma) \quad \text{e} \quad (\alpha \times \beta) \times \gamma = \alpha \times (\beta \times \gamma). \]
IX. Cadeias infinitas e ordinais

III. Lei distributiva:

$$\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma.$$

Quando a lei comunicativa não é válida, a forma acima da lei distributiva deve ser distinguida da seguinte:

$$(\beta + \gamma)\alpha = \beta\alpha + \gamma\alpha.$$

Como veremos adiante, uma forma pode ser verdadeira e a outra falsa.

IV. Leis da exponenciação:

$$\alpha^\beta \cdot \alpha^\gamma = \alpha^{\beta+\gamma}, \quad \alpha^\gamma \cdot \beta^\gamma = (\alpha\beta)^\gamma, \quad (\alpha^\beta)^\gamma = \alpha^{\beta\gamma}.$$

Todas estas leis são válidas para os cardinais, sejam eles finitos ou infinitos, e os ordinais finitos. Mas quando se trata de ordinais infinitos, ou de números-de-similaridade em geral, algumas delas aplicam-se e outras não. A lei comutativa não se aplica; a lei associativa aplica-se; a lei distributiva (adoptando a convenção acima respeitante à ordem dos factores num produto) aplica-se sob a forma:

$$(\beta + \gamma)\alpha = \beta\alpha + \gamma\alpha,$$

mas não sob a forma:

$$\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma;$$

as leis exponenciais:

$$\alpha^\beta \cdot \alpha^\gamma = \alpha^{\beta+\gamma}, \quad (\alpha^\beta)^\gamma = \alpha^{\beta\gamma}$$

ainda se aplicam, mas não a lei:

$$\alpha^\gamma \cdot \beta^\gamma = (\alpha\beta)^\gamma,$$

que está, obviamente, ligada à lei comutativa da multiplicação.

As definições de multiplicação e exponenciação que estão pressupostas nas proposições acima são algo complicadas. O leitor que desejar saber o que elas são e como as leis acima são demonstradas deve consultar o segundo volume de *Principia Mathematica*, *172*-176.

A aritmética ordinal transfinita foi estabelecida por Cantor em fase anterior à da aritmética cardinal transfinita, porque tinha várias aplicações matemáticas técnicas que a ela conduziram. Mas do ponto de vista da filosofia da matemática, é menos importante e menos fundamental do que a teoria dos cardinais transfinitos. Os cardinais
são essencialmente mais simples do que os ordinais, e constitui um curioso acidente histórico o facto de os primeiros terem aparecido como uma abstracção dos últimos, e só gradualmente vieram a ser estudados por si. Isto não se aplica ao trabalho de Frege, no qual os cardinais, finitos e transfinitos, foram tratados em completa independência dos ordinais; mas foi o trabalho de Cantor que tornou o mundo ciente do assunto, enquanto o de Frege permaneceu quase desconhecido, provavelmente em grande parte devido à dificuldade do seu simbolismo. E os matemáticos, como as outras pessoas, têm mais dificuldade em compreender e usar noções que são relativamente «simples» num sentido lógico do que em manipular noções mais complexas, porém mais familiares à sua prática ordinária. Por estas razões, só gradualmente foi reconhecida a verdadeira importância dos cardinais na filosofia matemática. A importância dos ordinais, embora de modo algum pequena, é distintamente menor do que a dos cardinais e está em grande medida fundida com a do conceito mais geral de números-de-similaridade.80

80 [Esta opinião de Russell sobre a subordinação dos ordinais aos cardinais não é confirmada pelos avanços posteriores na teoria dos conjuntos, mas mantém-se genericamente acertada no que respeita às aplicações em matemática de uns e outros.]
CAPÍTULO X

Limites e continuidade

O conceito de «limite» foi adquirindo, em matemática, cada vez maior importância do que se pensava. Todo o cálculo diferencial e integral, e, na verdade, quase tudo em matemática superior, depende dos limites. Antigamente supunha-se que os infinitésimos estivessem envolvidos nos fundamentos desses assuntos, mas Weierstrass mostrou que isto é um erro: onde quer que se pensava ocorrerem infinitésimais, o que realmente ocorre é um conjunto de quantidades finitas que têm zero como limite.81 Era costume pensar que «limite» fosse uma noção essencialmente quantitativa, a saber, a noção de uma quantidade da qual outras se aproximavam cada vez mais, de modo que entre estas outras haveria algumas diferindo dela por menos do que qualquer quantidade dada. Mas, na realidade a noção de «limite» é puramente ordinal, que não envolve quantidade alguma (excepto por acidente, quando a cadeia em causa seja quantitativa).82 Um ponto dado numa linha pode ser o limite de um conjunto [sucessão] de pontos da linha, sem que se torne necessário o emprego de coordenadas

81 [Trata-se de infinitésimos numéricos ou números (ou quantidades) infinitésimais, de natureza diferente da dos números reais «ordinários». Um infinitésimo positivo ξ é um número desta nova espécie que é menor do qualquer número real positivo dado. O que parecia um erro na época de Weierstrass revelou-se, quase cem anos depois, uma alternativa credível. Ver nota 90.]
82 [As noções de limite e continuidade têm que ver com conceitos de «vizinhança» e «proximidade». Nos sistemas familiares de números (racionais, reais ou complexos) estes conceitos são habitualmente definidos em termos da relação de ordem usual mas, em sistemas mais gerais e abstractos, podem ser igualmente estabelecidos sem recurso a uma ordem subjacente. Estes sistemas mais gerais são chamados espaços topológicos, e a Topologia é o ramo moderno das matemáticas onde eles são estudados. A afirmação de Russell sobre a dispensabilidade de noções de «quantidade» ou «medição» para poder definir uma noção de «limite» é verdadeira, mas a natureza «ordinal» da noção deve antes ser entendida no sentido topológico, o qual não pressupõe nenhuma espécie de «ordem».]
Introdução à Filosofia Matemática

ou de medição ou de qualquer outra coisa quantitativa. O número cardinal \(\aleph_0 \) é o limite (por ordem de grandeza) dos números cardinais 1, 2, 3, ... \(n \), ..., embora a diferença numérica entre \(\aleph_0 \) e um cardinal finito seja constante e infinita: do ponto de vista quantitativo, os números finitos, ao crescerem, não se aproximam de \(\aleph_0 \). O que torna \(\aleph_0 \) o limite dos números finitos é o facto de, na cadeia, ele vir imediatamente depois destes, o que constitui um facto ordinal e não um facto quantitativo.

Há várias formas da noção de «limite», de complexidade crescente. A mais simples e mais fundamental, da qual resultam as demais, já foi definida, mas repetiremos aqui as definições que a ela nos conduziram, numa forma geral na qual as definições não exigem que a relação envolvida seja serial. As definições são como segue:

Os elementos «minimais» de uma classe \(\alpha \) com respeito a uma relação \(P \) são os membros de \(\alpha \) e do campo de \(P \) (se existirem) com os quais nenhum membro de \(\alpha \) tem a relação \(P \).

Os «maximais» com respeito a \(P \) são os minimais com respeito à inversa de \(P \).

Os «sequentes» de uma classe \(\alpha \) com respeito a uma relação \(P \) são os minimais dos «majorantes» de \(\alpha \), e os «majorantes» de \(\alpha \) são os membros do campo de \(P \) com os quais todo o membro comum a \(\alpha \) e ao campo de \(P \) tem a relação \(P \).

Os «precedentes» com respeito a \(P \) são os sequentes com respeito à inversa de \(P \).

Os «limites superiores» de \(\alpha \) com respeito a \(P \) são os sequentes, desde que \(\alpha \) não tenha máximo; mas se \(\alpha \) tem um máximo, então não tem limite superior algum.

Os «limites inferiores» com respeito a \(P \) são os limites superiores com respeito à inversa de \(P \).\(^{83}\)

\(^{83}\) [Alguma terminologia que Russell utiliza (1919) deixou entretanto de ser utilizada ou mudou entretanto de significado. Quase sempre fazemos uma tradução «literal» de um termo, desde que esse termo não possua já um significado estabelecido de uso corrente. Assim, por exemplo, mantemos os termos «sequente» (de «sequent») e «precedente» (de «precedent»), «limite superior» (de «upper limit») e «limite inferior» (de «lower limit»), respectivamente, mas traduzimos «successors» por «majorantes». Note-se que na literatura anglo-saxónica actual as expressões «upper bound» e «lower bound» são traduzidas por «majorante» e «minorante», respectivamente, enquanto «least upper bound» se traduz vulgarmente por «supremo» (o menor dos majorantes) e «greatest lower bound» por «infimo». Assim, um limite superior, de acordo com a definição de Russell, é um supremo que não é máximo, e um limite inferior é um infimo que não é mínimo. Observe-se
Sempre que P seja conexa, uma classe poderá ter quando muito um máximo, um mínimo, um sequente etc. Assim, nos casos em que estamos interessados na prática, podemos falar de «o limite» (se houver algum).

Quando P é uma relação serial, podemos simplificar grandemente a definição acima de limite. Podemos, neste caso, definir primeiro a «fronteira» de uma classe α, isto é, os seus limites ou máximo [e mínimo], e depois passar a distinguir o caso no qual a fronteira é o limite daquele no qual é um máximo. Para este fim é melhor usar a noção de «segmento».

Chamemos «segmento de P definido por uma classe $\alpha»$ à classe dos elementos que têm a relação P com um ou mais membros de α.84 Isto será um segmento no sentido definido no Cap. VII; na verdade, todo o segmento no sentido aí definido é um segmento definido por alguma classe α. Se P é serial, o segmento definido por α consiste de todos os elementos que precedem algum elemento de α. Se α tem máximo, o segmento será formado por todos os predecessores do máximo. Mas se α não tiver máximo, todo o membro de α precede algum outro membro de α, e a classe α está, portanto, incluída no segmento definido por α. Tome-se, por exemplo, a classe que consiste das fraccções:

\[
\begin{array}{cccccc}
1 & 3 & 7 & 15 & \\
2 & 4 & 8 & 16 & \\
\end{array}
\]

isto é, de todas as fraccções da forma $1 - \frac{1}{2^n}$ para valores finitos diferentes de n. Esta cadeia de fraccções não tem máximo, e é claro que o segmento por ela definido (em toda a cadeia de fraccções por ordem de grandeza) é a classe de todas as fraccções próprias. Ou, ainda, considere-se os números primos, considerados como uma selecção dos cardinais (finitos e infinitos) por ordem de grandeza. Neste caso, o segmento definido consiste de todos os inteiros finitos.

84 [Simbolicamente, o segmento de P definido por α é a colecção $P^{-1}[\alpha] = \{x : (\exists y \in \alpha) xPy\}$, a que é mais usual chamar a pré-imagem de α por P.]
Admitindo que P é serial, a «frontera» de uma classe α será o elemento x (se existir) cujos predecessores são o segmento definido por α.

Um «máximo» de α é uma fronteira que pertence a α.

Um «limite superior» de α é uma fronteira que não pertence a α.

Se uma classe não tem fronteira alguma, não tem nem máximo nem limite. Esse é o caso de um corte «irracional» de Dedekind, ou do que é chamado uma «lacuna».

Assim, o «limite superior» de um conjunto de elementos, α, com respeito a uma cadeia P é o elemento x (se existir) que vem depois de todos os elementos de α, mas é tal que todo o elemento anterior vem antes de alguns dos elementos de α.

Podemos definir os «pontos limites superiores» de um conjunto β de termos como sendo os limites superiores de subconjuntos de β. Teremos, naturalmente, de distinguir entre pontos limites superiores e inferiores.\(^\text{85}\) Se considerarmos, por exemplo, a cadeia dos números ordinais:

$$1, 2, 3, \ldots \omega, \omega + 1, \ldots 2\omega, 2\omega + 1, \ldots 3\omega, \ldots \omega^2, \ldots \omega^3, \ldots,$$

os pontos limites superiores do campo desta cadeia são os ordinais que não têm predecessor imediato algum, isto é:

$$1, \omega, 2\omega, 3\omega, \ldots \omega^2, \omega^2 + \omega, \ldots 2\omega^2, \ldots \omega^3, \ldots$$

Os pontos limites superiores do campo desta nova cadeia serão:

$$1, \omega^2, 2\omega^2, \ldots \omega^3, \omega^3 + \omega^2, \ldots$$

Por outro lado, a cadeia dos ordinais — e, na verdade, toda a cadeia bem-ordenada — não tem pontos limites inferiores, porque não há termo algum, exceto o último, que não tenha sucessores imediatos. Mas se considerarmos uma cadeia como a das razões, todo o membro desta cadeia é tanto um ponto limite superior como inferior para conjuntos apropriados. Se considerarmos a cadeia dos números reais e dela extrairmos os números reais racionais, este conjunto (o dos racionais) terá todos os números reais como pontos limites superiores e inferiores. Os pontos limites de um conjunto constituem o chamado «primeiro derivado», os pontos limites do primeiro derivado constituem o segundo derivado e assim por diante.

\(^{85}\) [Na topologia dos sistemas de números racionais e reais, com as ordens usuais, pontos limites (inferiores ou superiores) são simplesmente chamados «pontos de acumulação».]

106

Introdução à Filosofia Matemática

Na introdução à Filosofia Matemática, Admitindo que P é serial, a «frontera» de uma classe α será o elemento x (se existir) cujos predecessores são o segmento definido por α.

Um «máximo» de α é uma fronteira que pertence a α.

Um «limite superior» de α é uma fronteira que não pertence a α.

Se uma classe não tem fronteira alguma, não tem nem máximo nem limite. Esse é o caso de um corte «irracional» de Dedekind, ou do que é chamado uma «lacuna».

Assim, o «limite superior» de um conjunto de elementos, α, com respeito a uma cadeia P é o elemento x (se existir) que vem depois de todos os elementos de α, mas é tal que todo o elemento anterior vem antes de alguns dos elementos de α.

Podemos definir os «pontos limites superiores» de um conjunto β de termos como sendo os limites superiores de subconjuntos de β. Teremos, naturalmente, de distinguir entre pontos limites superiores e inferiores.\(^\text{85}\) Se considerarmos, por exemplo, a cadeia dos números ordinais:

$$1, 2, 3, \ldots \omega, \omega + 1, \ldots 2\omega, 2\omega + 1, \ldots 3\omega, \ldots \omega^2, \ldots \omega^3, \ldots,$$

os pontos limites superiores do campo desta cadeia são os ordinais que não têm predecessor imediato algum, isto é:

$$1, \omega, 2\omega, 3\omega, \ldots \omega^2, \omega^2 + \omega, \ldots 2\omega^2, \ldots \omega^3, \ldots$$

Os pontos limites superiores do campo desta nova cadeia serão:

$$1, \omega^2, 2\omega^2, \ldots \omega^3, \omega^3 + \omega^2, \ldots$$

Por outro lado, a cadeia dos ordinais — e, na verdade, toda a cadeia bem-ordenada — não tem pontos limites inferiores, porque não há termo algum, exceto o último, que não tenha sucessores imediatos. Mas se considerarmos uma cadeia como a das razões, todo o membro desta cadeia é tanto um ponto limite superior como inferior para conjuntos apropriados. Se considerarmos a cadeia dos números reais e dela extrairmos os números reais racionais, este conjunto (o dos racionais) terá todos os números reais como pontos limites superiores e inferiores. Os pontos limites de um conjunto constituem o chamado «primeiro derivado», os pontos limites do primeiro derivado constituem o segundo derivado e assim por diante.

\(^{85}\) [Na topologia dos sistemas de números racionais e reais, com as ordens usuais, pontos limites (inferiores ou superiores) são simplesmente chamados «pontos de acumulação».]

Introdução à Filosofia Matemática
No que concerne os limites, podemos distinguir vários graus do que se pode chamar «continuidade» numa cadeia. A palavra «continuidade» tem sido usada desde há muito tempo, mas permaneceu sem qualquer definição precisa até à época de Dedekind e Cantor. Ambos deram significado preciso ao termo, mas a definição de Cantor é mais estreita do que a de Dedekind: uma cadeia que tenha a continuidade de Cantor deverá ter a continuidade de Dedekind, mas não reciprocamente.

A primeira definição que ocorreria naturalmente a quem estivesse a procurar um significado preciso para a continuidade das cadeias seria defini-la como sendo o que chamamos «densidade», isto é, no facto de entre dois termos quaisquer da cadeia haver outros. Mas seria uma definição inadequada, por causa da existência de «lacunas» nas cadeias como a das razões. Vimos no Cap. VII que há inúmeros modos pelos quais a cadeia das razões pode ser dividida em duas partes, das quais uma precede inteiramente a outra e das quais a primeira não tem último termo, enquanto a segunda não tem primeiro termo. Tal estado de coisas parece contrário à vaga sensação que temos quanto ao que deveria caracterizar a «continuidade», e, além disso, mostra que a cadeia das razões não é o tipo de cadeia necessário a muitos propósitos matemáticos. Tome-se, por exemplo, a geometria: queremos poder dizer que, quando duas linhas rectas se cruzam, elas têm um ponto em comum, mas, se a cadeia dos pontos numa linha recta fosse similar à cadeia das razões, as duas linhas poderiam cruzar-se numa «lacuna», sem ponto algum em comum. Trata-se de um exemplo tosco, mas podem ser dados muitos outros para mostrar que a densidade é inadequada como definição matemática de continuidade.

Foram as necessidades da geometria, mais que quaisquer outras, que conduziram à definição de continuidade «dedekindiana». O leitor deve estar lembrado de que definimos uma cadeia como dedekindiana quando toda a subclasse do campo tem uma fronteira. (É suficiente admitir que há sempre uma fronteira, ou que há sempre uma fronteira inferior). Equivale a dizer: uma cadeia é dedekindiana quando não há lacunas. A ausência de lacunas pode surgir através da existência de sucessores para os termos ou pela existência de limites na ausência de máximos. Assim, uma cadeia finita ou bem-ordenada é dedekindiana, e o mesmo se dá com a cadeia dos números reais. O primeiro tipo de cadeia dedekindiana é excluída se admitirmos que a cadeia é densa; neste caso, a cadeia deve ter uma propriedade que,

86 [É essencial qualificar: não vazia e limitada (superior ou inferiormente, conforme o caso).]
para muitos propósitos, pode ser apropriadamente chamada continuidade. Somos, assim, levados à definição seguinte:

Uma cadeia tem «continuidade dedekindiana» quando é dedekindiana e densa.

Mas esta definição ainda é ampla demais para muitos propósitos. Suponha-se, por exemplo, que desejamos poder atribuir ao espaço geométrico propriedades tais, que assegurem que todo ponto possa ser especificado por meio de coordenadas que são números reais: a continuidade dedekindiana não basta para garantí-lo. Queremos estar certos de que todo o ponto que não possa ser especificado por coordenadas racionais o possa ser como limite de uma sucessão de pontos de coordenadas racionais, e esta é mais uma propriedade que a nossa definição não permite deduzir.

Somos assim levados a investigar mais profundamente as cadeias com respeito aos limites. Esta investigação foi realizada por Cantor e formou a base da sua definição de continuidade, embora, na sua forma mais simples, ela esconda um pouco as considerações que lhe deram origem. Devemos, portanto, percorrer primeiro algumas das concepções de Cantor sobre o assunto, antes de darmos a sua definição de continuidade.

Cantor define uma cadeia como «perfeita» quando todos os seus pontos são pontos limites e todos os seus pontos limites pertencem a ela. Mas esta definição não exprime bem exactamente o que ele quer dizer. Não há correção alguma a fazer no que concerne a propriedade de que todos os seus pontos têm de ser pontos limites; trata-se de uma propriedade pertencente às cadeias densas, e a nenhuma outra, se queremos que todos os pontos sejam pontos limites superiores ou todos sejam pontos limites inferiores. Mas se admitirmos que sejam pontos limites de um dos tipos, sem especificar qual dos dois, haverá outras cadeias que terão a propriedade em questão — por exemplo, a cadeia de dízimas na qual uma dízima com período é distinguida da dízima finita correspondente e colocada imediatamente antes desta.87 Uma tal cadeia é muito aproximadamente densa, mas tem termos excepcionais que são consecutivos e dos quais o primeiro não tem predecessor imediato algum, enquanto o segundo não tem sucessor imediato algum. Excluindo cadeias como estas, as cadeias nas quais

87 [Por exemplo, 0, 3999... precederá a dízima finita correspondente 0, 4, embora as duas dízimas representem exactamente o mesmo número racional. Isto pode ser informalmente verificado do seguinte modo: pondos \(x = 0, 3999... \), tem-se \(10x = 3, 999... \), onde \(10x - x = 9x = 3, 999... - 0, 3999... = 3, 6 \) e, portanto, \(x = 3, 6/9 = 0, 4 \).]
todos os pontos são pontos limites são cadeias densas; e isto aplica-se sempre que for exigido que todo o ponto seja um ponto limite superior (ou que todo o ponto seja um ponto limite inferior).

Embora Cantor não considere explicitamente a questão, devemos distinguir diferentes tipos de pontos limites de acordo com a natureza da menor subcadeia pela qual possam ser definidos. Cantor admite que devem ser definidos por progressões, ou por regressões (que são as inversas das progressões). Quando todo o membro da cadeia é o limite de uma progressão ou de uma regressão, Cantor chama-lhe «densa em si mesma» (*insichdicht*).

Abordamos agora a segunda propriedade pela qual a perfeição deve ser definida, a saber, a propriedade de ser o que Cantor chama «fechado» (*abgeschlossen*). Esta propriedade foi, como vimos, definida primeiro como consistindo no facto de todos os pontos limites de uma cadeia a ela pertencerem. Mas isto só tem significado se a nossa cadeia é dada como contida em alguma outra cadeia maior (como é o caso, por exemplo, de uma selecção de números reais) e se os pontos limites são tomados em relação à cadeia maior. De outro modo, se uma cadeia é considerada simplesmente por si só, ela não pode deixar de conter os seus pontos limites. O que Cantor quer dizer não é exatamente o que ele diz; na verdade, noutras ocasiões diz algo bem diferente, que é o realmente queria dizer. O que verdadeiramente quer dizer é que toda a subcadeia diferente do tipo que seja de esperar tenha um limite tem de facto um limite dentro da cadeia dada; isto é, toda a subcadeia que não tem um máximo tem um limite, isto é, toda a subcadeia tem uma fronteira. Mas Cantor não enuncia isto para toda a subcadeia, apenas para as progressões e regressões. (Não é claro até que ponto ele reconhece ser isto uma limitação). Assim, constatamos, finalmente, ser a seguinte a definição que queremos:

Uma cadeia diz-se «fechada» (*abgeschlossen*) quando toda a progressão ou regressão nela contida tem um limite nela.

Temos, então, mais esta definição:

Uma cadeia é «perfeita» quando é densa em si mesma e fechada, isto é, quando todo o termo é o limite de uma progressão ou regressão e toda progressão ou regressão contida na cadeia tem um limite nela.

Ao buscar uma definição de continuidade, o que Cantor tem em mente é a busca de uma definição que se aplique à cadeia dos números reais e a qualquer cadeia similar àquela, mas a nenhuma outra. Com esta finalidade temos de acrescentar mais uma propriedade. Entre os números reais, alguns são racionais e outros irracionais; embora o
número de irracionais seja maior do que o de racionais, há, não obstante, racionais entre dois números reais quaisquer, por menor que seja a diferença entre estes dois. Como vimos, o número de racionais é \(\aleph_0 \). Isto dá-nos uma propriedade extra que basta para caracterizar completamente a continuidade, a saber, a propriedade de conter uma classe com \(\aleph_0 \) membros de tal maneira que alguns membros desta classe ocorrem entre dois termos quaisquer da nossa cadeia, por mais próximos que estes estejam. Esta propriedade, adicionada à perfeição, basta para definir uma classe de cadeias que são todas similares entre si e são, na verdade, um número serial [número-de-similaridade]. Esta classe é definida por Cantor como sendo a das cadeias contínuas.

Podemos simplificar ligeiramente a sua definição. Para começar, dizemos:

Uma subclasse \(\beta \) do campo de uma classe \(\alpha \) é densa em \(\alpha \) se entre dois termos quaisquer da cadeia serão encontrados membros da subclasse.\(^89\)

Assim, os racionais são uma subclasse densa na cadeia dos números reais. É óbvio que não poderá haver subclasses «densas em» a não ser nas cadeias densas.

Constatamos, então, que a definição de Cantor é equivalente à seguinte:

Uma cadeia é «continua» quando (1) é dedekindiana, (2) contém uma subclasse densa na cadeia com \(\aleph_0 \) elementos.

Para evitar a confusão, falaremos deste tipo de continuidade como «continuidade cantoriana». Ver-se-á que ela implica a continuidade dedekindiana, mas não inversamente. Todas as cadeias que tenham a continuidade cantoriana são similares, o mesmo não se dando com as que tenham a continuidade dedekindiana.

As noções de limite e continuidade que temos vindo a definir não devem ser confundidas com as noções de limite de uma função nas proximidades de um dado argumento, ou de continuidade de uma função nas vizinhanças de um dado argumento. Estas últimas são noções diferentes, muito importantes mas diferenciadas das noções acima e mais complicadas. A continuidade do movimento (se o movimento é contínuo) é um exemplo da continuidade de uma função; por outro lado, a continuidade do espaço e do tempo (se forem contínuos) é um exemplo de continuidade de cadeias, ou (falando mais cautelosamente) de um tipo de continuidade que pode, por meio de manipulação matemática suficiente, ser reduzido à continuidade de cadeias.

\(^89\) [A terminologia literal de Russell é: «\(\beta \) é uma classe mediana da cadeia \(\alpha \)».]
Atendendo à importância fundamental do movimento na matemática aplicada, bem como por outras razões, será bom tratarmos sucintamente das noções de limite e continuidade quando aplicadas às funções; mas será melhor deixarmos este assunto para um capítulo separado.

As definições de continuidade que temos vindo a considerar, saber, as de Dedekind e Cantor, não correspondem muito de perto à vaga ideia que está associada àquela palavra na mente do leigo ou do filósofo. Estes concebem a continuidade mais como uma ausência de separação, uma espécie de obliteração geral de distinções que caracteriza um nevoeiro cerrado. Uma névoa dá uma impressão de vastidão sem multiplicidade ou divisão definidas. É este tipo de coisa que um metafísico quer significar por «continuidade, declarando-a, muito honestamente, característica da sua vida mental e da vida mental das crianças e dos animais.

A ideia geral vagamente indicada pela palavra «continuidade», quando assim empregada, ou pela palavra «fluxo», é certamente bem diferente daquela que temos vindo a definir. Tome-se, por exemplo, a cadeia dos números reais. Cada número é o que é, bem definida e decididamente; não se passa, por graus imperceptíveis, de um para outro; é uma unidade firme e separada das restantes, a sua distância a qualquer outro número é finita, e há sempre números próximos a distâncias tão pequenas quanto quisermos. A questão da relação entre o tipo de continuidade existente entre os números reais e o tipo exibido, por exemplo, pelo que observamos num dado instante, é difícil e intrincada. Não devemos insistir em que os dois tipos sejam simplesmente idênticos, mas pode-se muito bem afirmar, creio, que a concepção matemática que temos vindo a considerar neste capítulo fornece o esquema lógico abstracto ao qual deve ser possível aportar material empírico mediante manipulação apropriada, se esse material puder ser chamado «contínuo» em algum sentido definível com precisão. Seria bem impossível justificar esta tese nos limites do presente volume. O leitor que esteja interessado poderá ler uma tentativa de justificação por este autor, particularmente com relação ao tempo, na revista *Monist* de 1914-15, bem como em partes de *Our Knowledge of the External World* [1914, edição revista 1926]. Com estas indicações, deixaremos este problema, por mais interessante que ele seja, a fim de voltarmos a assuntos mais estreitamente ligados à matemática.
Neste capítulo, trataremos da definição do limite de uma função (se existir) quando o argumento se aproxima de um determinado valor e também da definição de «função contínua». Ambos estes conceitos são algo técnicos e dificilmente seriam contemplados numa mera introdução à filosofia matemática, não fosse o facto de, especialmente através do chamado cálculo infinitesimal, pontos de vista errôneos sobre os assuntos de que estamos a tratar se terem tornado tão firmemente arraigados na mente dos filósofos profissionais que se torna necessário um esforço prolongado e considerável para a sua remoção. Penseu-se, desde o tempo de Leibniz, que o cálculo diferencial e integral exigisse quantidades infinitesimais. Os matemáticos (especialmente Weierstrass) provaram que isso era um erro; mas os erros como, por exemplo, os incorporados no que Hegel tem a dizer sobre matemática, resistem, e os filósofos tenderam a ignorar o trabalho de homens como Weierstrass.

Em trabalhos comuns de matemática, limites e continuidade de funções são definidos em termos que envolvem números. Isto não é

90 [Mal podia Russell imaginar que os lógicos, nos anos 60 do séc. XX, haveriam de encontrar uma fórmula rigorosa da análise dos infinitamente pequenos e grandes atuais, com a qual os matemáticos, desde Newton e Leibniz até meados do séc. XX podiam apenas sonhar. Esta fórmula chama-se \textit{Análise Não-standard} e é uma criação do lógico e matemático Abraham Robinson. Mas é claro que ela é tão logicamente necessária como o é a fórmula weierstrassiana: nenhuma aniquila a outra, antes são alternativas, ou melhor, a análise não-standard estende e enriquece a «clássica». Para uma brevíssima introdução ver o anexo «Infinitésimos e infinitamente grandes: o âmago da dificuldade» à edição revista por Paulo Almeida dos \textit{Conceitos Fundamentais da Matemática}, de Bento de Jesus Caraça, Gradiva, 1998.]
XI. Limites e continuidade de funções

essencial, como demonstrou o Dr. Whitehead. Começaremos, contudo, com as definições contidas nos manuais de matemática, e a seguir mostraremos como estas definições podem ser generalizadas de modo a poderem ser aplicadas aos sistemas ordenados em geral e não apenas aos sistemas numéricos ou numericamente mensuráveis.

Consideremos qualquer função matemática ordinária \(f(x) \), em que \(x \) e \(f(x) \) são ambos números reais e \(f(x) \) é univalente — isto é, quando \(x \) é dado, \(f(x) \) pode ter um único valor. Chamamos a \(x \) «argumento», e a \(f(x) \) «valor no argumento \(x \)». Quando uma função é o que chamamos «contínua», a ideia para a qual estamos a buscar uma definição precisa é a de que a pequenas diferenças em \(x \) devem corresponder pequenas diferenças em \(f(x) \), e, se tornarmos as diferenças em \(x \) suficientemente pequenas, podemos fazer com que as diferenças em \(f(x) \) sejam inferiores [em valor absoluto] a qualquer quantidade [positiva] dada. Não queremos admitir como contínuas uma função em que haja saltos repentinos no sentido em que, para algum \(x \), qualquer variação no argumento, por menor que seja, produza uma variação no valor \(f(x) \) que exceda [em valor absoluto] alguma quantidade positiva dada.

As funções ordinárias comuns da matemática têm esta propriedade como, por exemplo, \(x^2 \), \(x^3 \), \(\log x \), \(\sin x \) e muitas mais. Mas não é de todo difícil indicar funções descontínuas. Tome-se, como um exemplo não matemático, «o lugar de nascimento da pessoa mais jovem que esteja viva no instante de tempo \(t \)». Trata-se de uma função de \(t \); o seu valor é constante desde o instante do nascimento de uma pessoa até ao instante do próximo nascimento, e, então, o valor altera-se repentamente de um lugar de nascimento para o outro. Um exemplo matemático análogo seria: «maior inteiro menor do que \(x \)», em que \(x \) é um número real. Esta função permanece constante de um inteiro para o seguinte [exclusive] e logo então dá um salto repentino. O facto real é que, embora as funções contínuas sejam mais familiares, elas são a exceção: há infinitamente mais funções descontínuas do que contínuas.

Muitas funções são descontínuas para um ou diversos valores da variável, mas contínuas para todos os outros valores. Tome-se, por exemplo, \(\sin(1/x) \). A função \(\sin \theta \) passa por todos os valores de \(-1\) a \(1\)
até 1 sempre que \(\theta \) passa de \(-\pi/2\) a \(\pi/2\), ou de \(\pi/2\) a \(3\pi/2\), ou, de modo geral, de \((2n - 1)\pi/2\) a \((2n + 1)\pi/2\), em que \(n\) é um inteiro qualquer. Mas se considerarmos \(1/x\) quando \(x\) é muito pequeno, vemos que conforme \(x\) vai diminuindo, \(1/x\) vai crescendo cada vez mais rapidamente, de modo que passa cada vez mais rapidamente pelo ciclo de valores de um múltiplo de \(\pi/2\) até outro conforme \(x\) se vai tornando cada vez menor. Consequentemente, \(\tan(1/x)\) passa cada vez mais rapidamente de \(-1\) até 1 e novamente de volta, conforme \(x\) se torna cada vez menor. De facto, se tomarmos qualquer intervalo que contenha 0, digamos o intervalo de \(-\varepsilon\) a \(+\varepsilon\), em que \(\varepsilon\) é algum número [positivo] muito pequeno, \(\tan(1/x)\) passará por um número infinito de oscilações nesse intervalo e não podemos diminuir as oscilações tornando o intervalo menor. Assim, em torno do argumento 0 a função é descontínua. É fácil fabricar funções que são descontínuas em vários pontos, ou em \(\mathbb{N}_0\) pontos ou em todos os pontos. Em qualquer livro que trate da teoria de funções de variável real podem ser encontrados exemplos.

Passando agora à busca de uma definição precisa do que se quer dizer ao afirmar que uma função é contínua para um dado argumento, quando tanto o argumento como o valor são números reais, definimos primeiro uma «vizinhança» de um número \(x\) como sendo [o intervalo de] todos os números de \(x - \varepsilon\) até \(x + \varepsilon\), em que \(\varepsilon\) é algum número [positivo] que, em casos importantes, será muito pequeno. É claro que a continuidade num dado ponto tem que ver com o que acontece em qualquer vizinhança daquele ponto, por menor que seja.

O que desejamos é: se \(a\) é o argumento para o qual queremos que a nossa função seja contínua, definimos primeiro uma vizinhança (digamos \(\delta\) que contenha o valor \(f(a)\) que a função tem no argumento \(a\): queremos que, se tomarmos uma vizinhança suficientemente pequena que contenha \(a\), todos os valores para os argumentos nesta vizinhança pertençam à vizinhança \(\delta\), por mais pequena que tenhamos tomado \(\delta\). Quer dizer, se decretarmos que a a nossa função não deve diferir de \(f(a)\) por mais do que uma quantidade muito pequena, podemos sempre encontrar um intervalo de números reais, centrado em \(a\), tal que para todo \(x\) neste intervalo, \(f(x)\) não diferirá de \(f(a)\) por mais do que a pequenina quantidade prescrita. É isto deverá permanecer verídico seja qual for a quantidade muito pequena que possamos escolher. Assim sendo, somos levados à seguinte definição:

Diz-se que uma função \(f(x)\) é «contínua» no argumento \(a\) se, para todo número positivo \(\sigma\), diferente de 0, tão pequeno quanto quisermos, existir um número positivo \(\varepsilon\), diferente de 0, tal que, para
todos os valores de \(\delta \) que sejam numericamente menores\(^{93} \) do que \(\varepsilon \), a diferença \(f(a + \delta) - f(a) \) seja numericamente menor do que \(\sigma \).

Nesta definição, \(\sigma \) começa por definir uma vizinhança de \(f(a) \), nomeadamente, a vizinhança de \(f(a) - \sigma \) a \(f(a) + \sigma \). A definição passa então a dizer que podemos (por meio de \(\varepsilon \)) definir uma vizinhança, a saber, de \(a - \varepsilon \) a \(a + \varepsilon \), tal que, para todos os argumentos dentro desta vizinhança, os valores da função ficam dentro da vizinhança de \(f(a) - \sigma \) a \(f(a) + \sigma \). Se isto puder ser feito, seja qual for a escolha de \(\sigma \), a função será «contínua» no argumento \(a \).

Até agora não definimos o «limite» de uma função para um dado argumento. Se o tivéssemos feito, poderíamos ter definido de maneira diferente a continuidade de uma função: uma função é contínua num ponto desde que o seu valor nesse ponto seja igual ao limite dos seus valores para argumentos que se aproximam do ponto pela esquerda [números inferiores ao ponto] ou pela direita do ponto. Mas só as funções excepcionalmente «bem comportadas» têm um limite definido quando o argumento se aproxima de um ponto dado. A regra geral é que uma função oscile e que, dada qualquer vizinhança de um determinado argumento, por mais pequena que seja, a função percorra uma banda de valores para argumentos dentro desta vizinhança. Como esta é uma regra geral, consideremo-la em primeiro lugar.

Consideremos o que pode acontecer quando o argumento se aproxima de algum valor \(a \), vindo da esquerda. Quer dizer, desejamos considerar o que acontece para argumentos no intervalo de \(a - \varepsilon \) a \(a \), em que \(\varepsilon \) é algum número [positivo] que, em casos importantes, será muito pequeno.

Os valores da função para argumentos entre \(a - \varepsilon \) e \(a \) (excluído \(a \)) constituem um conjunto de números reais que determinará uma certa secção do conjunto dos números reais, nomeadamente, a secção que consiste dos números que não são maiores do que \(\sigma \) os valores da função nos argumentos entre \(a - \varepsilon \) e \(a \). Dado qualquer número desta secção, há valores da função pelo menos tão grandes quanto este número para argumentos entre \(a - \varepsilon \) e \(a \), isto é, para argumentos que são muito pouco inferiores a \(a \) (se \(\varepsilon \) é muito pequeno). Tomemos todos os \(\varepsilon \) possíveis e todas as secções correspondentes possíveis. A parte comum de todas estas secções será chamada a «secção final» quando o argumento tende para \(a \). Dizer que um número \(\varepsilon \) pertence à secção final é dizer que, por menor que façamos \(\varepsilon \), haverá argumentos entre \(a - \varepsilon \) e \(a \) para os quais o valor da função não é menor do que \(\varepsilon \).

\(^{93}\) Um número \(x \) diz-se «numericamente menor» do que \(\varepsilon \) quando se situa entre \(-\varepsilon \) e \(+\varepsilon \). [Equivale a dizer: \(|x| < \varepsilon \).]
Podemos aplicar exactamente o mesmo processo às secções superiores, isto é, às secções que ascendem de algum ponto até ao cimo, em vez de ascenderem de baixo até algum ponto. Aqui, tomamos os números que não são menores do que todos os valores para os argumentos entre \(a - \varepsilon \) e \(a \); isto define uma secção superior que variará com \(\varepsilon \). Tomando a parte comum de todas estas secções para todos os \(\varepsilon \) possíveis, obtemos a «secção final superior». Dizer que um número \(z \) pertence à secção final superior é dizer que, por menor que tomemos \(\varepsilon \), haverá argumentos entre \(a - \varepsilon \) e \(a \) para os quais o valor da função não é maior do que \(z \).

Se um elemento \(z \) pertence tanto à secção final como à secção final superior, diremos que pertence à «oscilação final». Podemos ilustrar o que acontece considerando mais uma vez a função \(\sin(1/x) \) quando \(x \) tende para \(0 \). Admitiremos, a fim de nos enquadrarmos nas definições acima, que \(x \) se aproxima de \(0 \) por argumentos inferiores a \(0 \).

Começamos com a «secção final». Entre \(-\varepsilon \) e \(0 \), seja qual for \(\varepsilon \), a função tomará o valor 1 para certos argumentos, mas nunca tomará qualquer valor maior. Assim sendo, a secção final consiste de todos os números reais, positivos e negativos, até e incluindo 1; isto é, consiste de todos os números negativos juntamente com 0, juntamente com os números positivos até \(1 \), inclusive.

Analogamente, a «secção final superior» consiste de todos os números positivos juntamente com 0, juntamente com os números negativos descendo até \(-1 \), inclusive.

Assim, a «oscilação final» consiste de todos os números reais de \(-1 \) a \(1 \), ambos incluídos.

De um modo geral, podemos dizer que a «oscilação final de uma função quando o argumento se aproxima de \(a \) por valores inferiores consiste de todos os números \(x \) tais que, por mais próximo que cheguemos de \(a \), ainda haverá valores tão grandes como \(x \) e valores tão pequenos como \(x \).

A oscilação final poderá não conter elemento algum, ou um elemento, ou muitos elementos. Nos primeiros dois casos, a função tem um limite definido para aproximações por argumentos inferiores. Se a oscilação tem um elemento, isto é razoavelmente óbvio. É igualmente verídico se ela não tem elemento algum; pois não é difícil provar que, se a oscilação final é vazia, a fronteira da secção final é a mesma que a da secção final superior, e pode ser definida como o limite da função para aproximações por argumentos inferiores. Mas se a oscilação final tem muitos elementos, não há limite definido algum para a função, para aproximações por argumentos inferiores. Neste caso, podemos tomar as fronteiras superior e inferior da
XI. Limites e continuidade de funções

oscilação final (isto é, a fronteira inferior da secção final superior e a fronteira superior da secção final) como limites superior e inferior dos seus valores «finais» para aproximações pela esquerda. Analogamente, obtemos limites inferiores e superiores dos valores «finais» para aproximações pela direita. Assim, temos, no caso geral, quatro limites para uma função, para aproximações a um dado argumento. O verdadeiro limite para um dado argumento só existe quando todos estes quatro são iguais, e é, então, o seu valor comum. Se é também o valor da função no argumento , a função é contínua neste argumento. Isto pode ser tomado como definição de continuidade: é equivalente à nossa definição anterior.

Podemos definir o limite de uma função para um dado argumento (se ele existe) sem passarmos pela oscilação final e pelos quatro limites do caso geral. A definição prossegue, nesse caso, exactamente como a definição anterior de continuidade. Definamos o limite para aproximações por argumentos inferiores. Para que haja um limite definido para aproximações a por argumentos inferiores, é necessário e suficiente que, dado qualquer número pequeno , dois quaisquer valores da função para dois argumentos suficientemente próximos de (mas ambos inferiores a) difiram um do outro por menos de ; isto é, se for suficientemente pequeno e os nossos argumentos se situarem ambos entre e (excluído), então a diferença entre os valores da função nesses argumentos será menor do que . Se isto acontecer para qualquer , por menor que seja, a função tem um limite para aproximações pela esquerda. Analogamente, definimos o caso em que há um limite para aproximações pela direita. Estes dois limites, mesmo quando ambos existem, não têm de ser iguais; e se são idênticos, não necessitam, ainda assim, ser idênticos ao valor da função no argumento . É somente neste último caso que dizemos que a função é contínua no argumento .

Uma função diz-se «continua» (sem qualificação) quando é contínua em todos os argumentos [do seu domínio].

Outro método ligeiramente diferente de obter a definição de continuidade é o seguinte:

Dizemos que uma função «converge finalmente para uma classe » se existe algum número real que, para este e todos os argumentos maiores, o valor da função pertence à classe . Analogamente, diremos que uma função «converge para quando o argumento se aproxima de por valores inferiores» se há algum argumento menor do que , tal que, para argumentos no intervalo de (inclusive) até (inclusive), a função toma valores em . Podemos agora dizer que
uma função é contínua para o argumento \(a \), no qual tem o valor \(f(a) \), se satisfizer quatro condições, a saber:

1. Dado qualquer número real menor do que \(a \), a função converge para os sucessores desse número quando o argumento se aproxima de \(a \) por valores inferiores;
2. Dado qualquer número real maior do que \(a \), a função converge para os predecessores desse número quando o argumento se aproxima de \(a \) por valores inferiores;
3. e 4. Condições análogas para aproximações a \(a \) por valores superiores.

As vantagens desta forma de definição estão em que ela analisa as condições de continuidade em quatro, derivadas de se considerar os argumentos e os valores respectivamente maiores ou menores do que o argumento e o valor para o qual a continuidade tem de ser definida.

Podemos agora generalizar as nossas definições de modo a que se apliquem a cadeias que não são numéricas ou que não saiba se são numericamente mensuráveis. O movimento é um caso que convém ter em mente. Há uma história de H.G. Wells que ilustra, no caso do movimento, a diferença entre o limite de uma função num dado argumento e o seu valor no mesmo argumento. O herói da história, que possuía, sem o saber, o poder de realizar os seus desejos, estava a ser perseguido por um polícia mas, ao excluir «Vai para ___, constou que o polícia desapareceu. Se \(f(t) \) era a posição do polícia no tempo \(t \) e \(t_0 \) o instante da exclamação, o limite das posições do polícia quando \(t \) se aproximou de \(t_0 \) por valores inferiores estaria em contacto com o herói, enquanto o valor no argumento \(t_0 \) seria ___. Mas supõe-se que tais ocorrências são raras no universo, e admite-se, embora sem indícios adequados, que todos os movimentos são contínuos, isto é, que dado qualquer corpo, se \(f(t) \) é a sua posição no tempo \(t \), \(f(t) \) é uma função contínua de \(t \). É o significado de «continuidade» envolvido em tais asserções que desejamos definir agora tão simplesmente quanto possível.

As definições dadas para o caso de funções nas quais o argumento e o valor são números reais podem ser prontamente adaptadas a casos mais gerais.

Sejam \(P \) e \(Q \) duas relações, que é melhor supor serem seriais, embora isto não seja necessário para as nossas definições. Seja \(R \) uma relação de um-para-muitos cujo domínio está contido no campo de \(P \), enquanto o seu domínio inverso está contido no campo de \(Q \). Então \(R \) é (em sentido generalizado) uma função cujos argumentos pertencem ao campo de \(Q \), enquanto os seus valores pertencem ao campo de \(P \). Suponhamos, por exemplo, que estamos a lidar com uma partícula que
XI. Limites e continuidade de funções

se desloca numa linha: seja Q a cadeia do tempo, P a cadeia dos pontos sobre a nossa linha da esquerda para a direita e R a relação da posição da nossa partícula sobre a linha no tempo a com o tempo a, de modo que «R de a» é a sua posição no tempo a. Esta ilustração deve ser mantida em mente ao longo das nossas definições.

Diremos que a função R é contínua no argumento a se, dado qualquer intervalo α na P-cadeia que contém o valor da função no argumento a, há um intervalo na Q-cadeia que não contém a como ponto extremo e tal que, ao longo de todo esse intervalo, a função tem valores que são membros de α. (Por «intervalo» queremos dizer todos os elementos entre dois dados, isto é, se x e y são dois membros do campo de P, e x tem a relação P com y, entende-se por «P-intervalo de x a y» todos os elementos z tais que x tem a relação P com z e z tem a relação P com y — juntamente, quando assim se declarar, com os próprios x ou y).

Podemos facilmente definir a «secção final» e a «oscilação final». Para definir a «secção final» para aproximações ao argumento a por argumentos inferiores, tome-se qualquer argumento y que preceda a (isto é, tenha a relação Q com a), tome-se os valores da função para todos os argumentos até y, inclusive, e forme-se a secção de P definida por esses valores, isto é, os membros da P-cadeia que são anteriores ou idênticos a alguns desses valores. Forme-se todas estas secções para todos os y que precedem a e tome-se a sua parte comum; isto será a secção final. A secção final superior e a oscilação final são então definidas exactamente como no caso anterior.

A adaptação da definição de convergência e da definição alternativa de continuidade daí resultante não oferece dificuldade alguma.

Dizemos que a função R é «finalmente Q-convergente para α» se houver um elemento y do domínio inverso de R e do campo de Q tal que o valor da função R para o argumento y e para qualquer argumento com o qual y tenha a relação Q pertence a α. Dizemos que R «Q-converge para α quando o argumento tende para um dado argumento a» se há um elemento y que tem a relação Q com a, pertence ao domínio inverso de R e é tal que os valores da função nos argumentos do Q-intervalo de y (inclusive) a a (exclusive) pertencem a α.

Das quatro condições que uma função tem de preencher para que seja contínua no argumento a, a primeira, chamando b ao valor no argumento a, é:

Dado qualquer elemento com a relação P com b, R Q-converge para os sucessores de b (com respeito a P) quando o argumento tende para α por valores inferiores.
A segunda condição obtém-se substituindo P pela sua inversa; a terceira e a quarta são obtidas da primeira e da segunda substituindo Q pela sua inversa, respectivamente.

Nada há, portanto, nas noções de limite de uma função ou de continuidade de uma função que envolva os números de maneira essencial. Ambas podem ser definidas de modo geral e muitas proposições a seu respeito podem ser demonstradas para duas cadeias quaisquer (sendo uma a cadeia dos argumentos e a outra a cadeia dos valores da função). Pode-se ver que as definições não envolvem infinitesimais. Envolvem classes infinitas de intervalos que se tornam indefinidamente mais pequenos sem cessar, mas não envolvem qualquer intervalo que não seja finito. Isto é análogo ao facto de que, se uma linha de um centímetro de comprimento for reduzida a metade e esta depois novamente reduzida a metade e assim por diante indefinidamente, nunca atingiremos um infinitesimal: após n bissecções, o comprimento do nosso fragmento de recta será $\frac{1}{2^n}$ cm; e será um comprimento finito, seja qual for o número n. O processo de bissecções sucessivas não conduz a divisões cujo número ordinal é infinito, porquanto é essencialmente um processo de um a um. Os infinitesimais não podem ser atingidos desta maneira. As confusões em torno destes assuntos tiveram muito a ver com as dificuldades encontradas na discussão sobre a infinidade e a continuidade.
CAPÍTULO XII

Escolhas e o axioma multiplicativo

Temos de considerar neste capítulo um axioma que pode ser enunciado mas não provado, em termos de lógica, e que é conveniente, embora não indispensável, em certas partes da matemática. É conveniente no sentido de muitas proposições interessantes, que parece natural supor-se verdadeiras, não poderem ser demonstradas sem a sua ajuda; mas não é indispensável, porque até mesmo sem estas proposições os assuntos em que ocorrem ainda existem, embora de uma forma algo mutilada.94

Antes de enunciarmos o axioma multiplicativo, devemos primeiro explicar a teoria das escolhas e a definição de multiplicação quando o número de factores pode ser infinito.

Ao definir as operações aritméticas, o único procedimento correcto é construir uma classe actual (ou relação, no caso dos números-de-similaridade) com o número exigido de elementos. Isto exige, por vezes, um certo grau de engenho, mas é essencial para provar a existência do número definido. Tome-se, como o exemplo mais simples, o caso da adição. Suponhamos dado o número cardinal \(\alpha \), e uma classe \(\beta \) com \(\mu \) elementos. Como definir \(\alpha + \beta \)? Para este fim devemos ter duas classes, cada uma com \(\mu \) elementos, que não se sobreponham. Podemos construir duas tais classes de várias maneiras a partir de \(\alpha \), sendo talvez a que se segue a mais simples: forme-se primeiro todos os pares ordenados cuja primeira componente é uma classe consistindo de um único membro de \(\alpha \), e cuja segunda componente é a classe vazia; depois, forme-se todos os pares ordenados cujo primeiro elemento é a classe vazia e cujo segundo elemento é uma classe consistindo de um único membro de \(\alpha \). Estas duas classes de pares ordenados não têm membro algum em comum e a sua união tem \(\mu + \mu \) elementos. De modo exactamente análogo podemos definir

94 [Volvidos tantos anos, já não se afigura correcta a afirmação do autor sobre a dispensabilidade do axioma em questão, no gosto das matemáticas hodiernas.]
Introdução à Filosofia Matemática

\[\mu + \nu, \text{ onde } \mu \text{ é o número cardinal de alguma classe } \alpha \text{ e } \nu \text{ o de alguma classe } \beta. \]

Tais definições são, via de regra, meramente uma questão de dispositivo técnico apropriado. Mas no caso da multiplicação, em que o número de factores pode ser infinito, a definição coloca alguns problemas importantes.

Quando o número de factores é finito, a multiplicação não oferece dificuldade alguma. Dadas suas classes \(\alpha \) e \(\beta \), a primeira com \(\mu \) elementos e a segunda com \(\nu \) elementos, podemos definir \(\mu \times \nu \) como sendo o número de pares ordenados que podem ser formados escolhendo a primeira componente em \(\alpha \) e a segunda em \(\beta \). Pode-se ver que esta definição não exige que \(\alpha \) e \(\beta \) não se sobreponham; ela permanece adequada até mesmo quando \(\alpha \) e \(\beta \) são idênticos. Por exemplo, seja \(\alpha \) uma classe cujos membros são \(x_1, x_2 \) e \(x_3 \). Então, a classe usada para definir o produto é a classe dos pares:

\[
(x_1, x_1), (x_1, x_2), (x_1, x_3); (x_2, x_1), (x_2, x_2), (x_2, x_3);
(x_3, x_1), (x_3, x_2), (x_3, x_3).
\]

Esta definição permanece aplicável quando \(\mu \), ou \(\nu \), ou ambos, são infinitos, podendo ser estendida, passo a passo, a três ou a quatro ou a qualquer número finito de factores. Não se apresenta dificuldade alguma com esta definição, excepto a resultante de não poder ser estendida a um número infinito de factores.

O problema da multiplicação, quando o número de factores pode ser infinito, surge da seguinte maneira: seja \(\kappa \) uma classe de classes, e suponha-se dado o número de elementos de cada uma destas classes. Como definir o produto de todos estes números? Se pudermos dar uma definição geral, ela será aplicável quer \(\kappa \) seja finita ou infinita. Observe-se que o problema é sermos capazes de lidar com o caso em que \(\kappa \) é infinita e não com a infinidade dos seus membros. Se \(\kappa \) não for infinita, o método acima definido é tão aplicável quando os seus membros forem finitos como quando forem finitos. É com o caso em que \(\kappa \) é infinita, embora os seus membros possam ser finitos, que temos de saber lidar.

\footnote{[Em símbolos, uma das classes \((\alpha \times \{\emptyset\}) \) — ver nota 96] é formada por todos os pares ordenados da forma \((x, \emptyset) \), com \(x \) em \(\alpha \), a outra \((\emptyset \times \beta) \) é formada pelos pares da forma \((\emptyset, x) \), com \(x \) em \(\beta \). Estas duas classes são disjuntas e a sua união \((\alpha \times \{\emptyset\}) \cup (\emptyset \times \beta) \) tem cardinal \(\mu + \nu \), se o cardinal de \(\alpha \) for \(\mu \) e o de \(\beta \) for \(\nu \).]}

\footnote{[A classe de todos estes pares, \(\{(x, y) : x \in \alpha \land y \in \beta\} \), designa-se por \(\alpha \times \beta \) e é chamada o \textit{produto cartesiano} de \(\alpha \) e \(\beta \).]}
O método que se segue de definir a multiplicação em geral deve-se ao Dr. Whitehead. É explicado e tratado pormenorizadamente em *Principia Mathematica*, vol. I, *§80* e segs., e vol. II, *§114*.

Suponhamos, para começar, que κ é uma classe de classes das quais não há duas que se sobreponham — digamos, os círculos eleitorais de um país em que não há pluralidade de votação, sendo cada círculo considerado uma classe de eleitores. Dediquemo-nos agora à tarefa de escolher um elemento de cada classe para seu representante, como o fazem os eleitores quando elegem membros do Parlamento, admitindo-se que, por lei, cada eleitor tenha de escolher um homem que vote no mesmo círculo eleitoral. Chegamos assim a uma classe de representantes, que formam o nosso Parlamento, onde cada um foi escolhido no seu círculo. Quantas maneiras diferentes haverá para se escolher um Parlamento? Cada círculo eleitoral pode selecionar qualquer um dos seus eleitores, e, portanto, se houver μ eleitores num círculo eleitoral, este poderá fazer μ escolhas. As escolhas dos diferentes círculos são independentes; assim, é óbvio que, quando o número total de círculos eleitorais é finito, o número de Parlamentos possíveis obtém-se multiplicando os números de eleitores dos vários círculos. Quando não sabemos se o número de círculos é finito ou infinito, podemos considerar o número de Parlamentos possíveis como definição do produto dos números dos diversos círculos eleitorais. Este é o método pelo qual os produtos infinitos são definidos. Deixemos agora a nossa ilustração, e passemos às formulações precisas.

Seja κ uma classe de classes [não vazias] e admitamos, para começar, que não se dá o caso de dois membros de κ se sobreponerem, isto é, que se $\alpha \neq \beta$ são membros diferentes de κ, nenhum membro de um é membro do outro. Chamamos a uma classe uma "selecção" quando consiste de apenas um elemento retirado de cada membro de κ; isto é, μ é uma "selecção" de κ se todo membro de μ pertence a algum membro de κ, e, se α é um membro qualquer de κ, então μ e α têm exactamente um elemento em comum. Chamaremos "classe multiplicativa" de κ à classe de todas as "selecções" obtidas de κ. O produto dos números dos membros de κ é, por definição, o número de elementos da classe multiplicativa de κ, isto é, o número de selecções possíveis de κ. Esta definição é igualmente aplicável quer κ seja finita ou infinita.

Antes de podermos ficar totalmente satisfeitos com estas definições, devemos remover a restrição de que os membros de κ sejam

97 [Dizemos, neste caso, que os membros de κ são *disjuntos dois a dois*.]
Introdução à Filosofia Matemática
disjuntos dois a dois. Para este fim, em vez de definirmos primeiro uma classe chamada uma «selecção», definiremos primeiro uma relação a que chamaremos «selectora». Uma relação R será chamada «selectora» de ℵ se, de todo membro de ℵ, selecionar um elemento para representante daquele membro, isto é, se, dado qualquer membro α de ℵ, houver apenas um elemento x que é membro de α e tem a relação R com α; e isto é tudo o que R faz. A definição formal é:

Uma «selectora» de uma classe de classes ℵ é uma relação de um-para-muitos que tem ℵ para domínio inverso e tal que, se x tem esta relação com α, então x é membro de α.

Se R é uma selectora de ℵ e α é um membro de ℵ, e x é o elemento que tem a relação R com α, chamamos a x «representante» de α com respeito à relação R.

Uma «selecção» de ℵ será agora definida como o domínio de uma selectora; e a classe multiplicativa será, como antes, a classe das selecções.

Mas quando os membros de ℵ se sobrepõem, pode haver mais selectoras do que selecções, porquanto um elemento x que pertence a duas classes α e β pode ser selecionado uma vez para representar α e novamente para representar β, dando origem a diferentes selectoras, nos dois casos, mas à mesma selecção. Para definir a multiplicação, necessitamos das selectoras mais do que das selecções. Assim, definimos:

«O produto dos números dos membros de uma classe de classes ℵ» é o número de selectoras de ℵ.98

Podemos definir a exponenciação mediante uma adaptação do esquema acima. Podemos, é claro, definir ℵ para o número de selectoras de ℵ classes, cada uma das quais com ℵ elementos. Mas há objecções a esta definição, resultantes do facto de o axioma multiplicativo (de que falaremos adiante) ficar desnecessariamente complicado, caso seja adoptado. Adoptamos, em vez disso, a seguinte construção:

Seja α uma classe que contenha ℵ elementos e β outra com ℵ elementos.

Seja y um membro de β e forme-se a classe de todos os pares ordenados que têm y para segunda componente e um membro de α para primeira componente. Haverá ℵ destes pares para um dado y, pois qualquer membro de α poderá ser escolhido para primeiro

98 [Supondo que ℵ é constituída pelas classes α₀, α₁, α₂, ..., um selector de ℵ é \(\langle x₀, x₁, x₂, ... \rangle \), onde \(xᵢ ∈ αᵢ \) para cada \(i = 0, 1, ..., \) e então a classe multiplicativa de ℵ é a classe de todos os(as) selectores(as).]
elemento e \(\alpha \) tem \(\mu \) elementos. Se formarmos agora todas as classes deste tipo que resultam de variar \(y \), obteremos ao todo \(\nu \) classes, porque \(y \) poderá ser qualquer membro de \(\beta \), e \(\beta \) tem \(\nu \) membros. Cada uma destas \(\nu \) classes é uma classe de pares, a saber, todos os pares que podem ser formados por um membro variável de \(\alpha \) e um membro fixo de \(\beta \). Definimos \(\mu^\nu \) como o número de selectoras obtidas da classe constituída por aquelas \(\nu \) classes. Ou podemos igualmente definir \(\mu^\nu \) como o número de selecções, pois, como as nossas classes de pares são mutuamente exclusivas, o número de selectoras é o mesmo que o de selecções. Uma selecção da nossa classe de classes será um conjunto de pares ordenados, dos quais haverá exactamente um que tenha qualquer membro dado de \(\beta \) para segunda componente, podendo a sua primeira componente ser um membro qualquer de \(\alpha \). Assim, \(\mu^\nu \) é definido pelas selectoras de um certo conjunto de \(\nu \) classes que tenha cada uma \(\mu \) elementos, mas o conjunto terá uma certa estrutura e uma composição mais manobrável do que acontece em geral. A relevância disto para o axioma multiplicativo aparecerá brevemente.

O que se aplica à exponenciação aplica-se também ao produto de dois cardinais. Podemos definir \(\langle \mu \times \nu \rangle \) como a soma dos números de \(\nu \) classes, cada uma com \(\mu \) elementos, mas preferimos defini-lo como o número de pares ordenados a serem formados consistindo de um membro de \(\alpha \) seguido de um membro de \(\beta \), em que \(\alpha \) tem \(\mu \) elementos e \(\beta \) tem \(\nu \) elementos. Esta definição também tem por objectivo fugir à necessidade de pressupor o axioma multiplicativo.

Com estas definições, podemos demonstrar as leis formais usuais da multiplicação e exponenciação. Mas há uma coisa que não podemos provar: não podemos provar que um produto só é zero quando um dos seus factores é zero. Podemos prová-lo quando o número de factores é finito, mas não quando é infinito. Por outras palavras, não podemos provar que para toda a uma classe de classes não vazias, existem sempre selectoras delas; ou que, dada uma classe de classes mutuamente exclusivas, há pelo menos uma classe consistindo de um elemento retirado de cada uma das classes dadas. Estas coisas não

99 [Modernamente, se \(\alpha \) e \(\beta \) são conjuntos com cardinais \(\mu \) e \(\nu \), respectivamente, representa-se por \(^\beta \alpha \) o conjunto de todas as funções com domínio \(\beta \) e valores em \(\alpha \), e define-se o cardinal \(\mu^\nu \) como sendo o cardinal de \(^\beta \alpha \). Bem entendido, esta definição pressupõe a coerência, quer dizer, o resultado \(\mu^\nu \) não depende realmente dos conjuntos \(\alpha \) e \(\beta \) mas apenas dos respectivos cardinais \(\mu \) e \(\nu \). Este resultado demonstra-se facilmente na teoria dos conjuntos. Considerações análogas valem para a adição e a multiplicação de cardinais.]
podem ser demonstradas; e embora pareçam óbvias à primeira vista, a reflexão provoca dúvidas crescentes até que finalmente nos limitamos a anotar a suposição e as suas consequências, da mesma maneira que anotámos o axioma das paralelas, sem presumir que sabemos se é verdadeiro ou falso. A suposição é, informalmente, a de que as selec- toras e as selecções existem quando devemos esperá-las. Há muitas maneiras equivalentes de enunciar isto com precisão. Podemos começar com a seguinte:

«Dada qualquer classe de classes mutuamente exclusivas, das quais nenhuma é vazia, há pelo menos uma classe que tem exactamente um elemento em comum com cada uma das classes dadas». A esta proposição chamamos «axioma multiplicativo».\[100\] Daremos primeiro várias formas equivalentes desta proposição, e, depois, consideraremos certas maneiras pelas quais a sua verdade ou falsidade é de interesse para a matemática.

O axioma multiplicativo é equivalente à proposição de que um produto só é zero quando um dos seus factores é zero; isto é, à proposição de que, se qualquer número de números cardinais forem multiplicados entre si, o resultado não poderá ser 0, a menos que um dos números envolvidos seja 0.

O axioma multiplicativo é equivalente à proposição de que, se R for uma relação qualquer, e κ qualquer classe contida no domínio inverso de R, então haverá pelo menos uma relação de um-para-<espaço>-muitos que implica [ou: contida em] R e tem κ para seu domínio inverso.

O axioma multiplicativo é equivalente à suposição de que, se α for uma classe qualquer e κ a classe de todas as subclasses de α, com a exceção da classe vazia, então haverá pelo menos uma selectora de κ. Esta foi a forma sob a qual o axioma multiplicativo foi pela primeira vez colocado sob a atenção do mundo erudito por Zermelo, no seu artigo “Beweis, dass jede Menge wohlgeordnet werden kann”.\[101\] Zermelo considera o axioma uma verdade inquestionável. Deve-se observar que, antes de este axioma ter sido explicitado, os matemáticos usavam-no sem hesitação; mas parece que o faziam inconscientemente. O crédito que se deve dar a Zermelo por torná-lo explícito é inteiramente independente da questão de ser o mesmo verdadeiro ou falso.

\[101\] Mathematische Annalen, Vol. LIX (1904), 514-516. Referimo-nos a esta forma de enunciar como axioma de Zermelo. [Trad. ingl. “Proof that every set can be well-ordered” em Van Heijenoort, 139-141.]
Zermelo mostrou, na prova acima mencionada, que o axioma multiplicativo é equivalente à proposição de que toda a classe pode ser bem-ordenada, isto é, os seus elementos podem ser dispostos numa cadeia na qual toda subclass tem um primeiro elemento (excepto, naturalmente, a classe vazia). A prova completa desta proposição é difícil mas não é difícil ver-se o princípio geral em que se baseia. É usada a forma a que chamamos «axioma de Zermelo», isto é, é pressuposto que, dada qualquer classe α, há pelo menos uma relação de um-para-um, R, cujo domínio inverso consiste de todas as subclasses [não vazias] de α e é tal que, se x tem a relação R com ξ, então x é membro de ξ. Tal relação escolhe um «representante» de cada subclass; naturalmente, poderá acontecer com frequência duas subclasses terem o mesmo representante. O que Zermelo faz, de facto, é extrair os membros de α, um a um, por meio de R e da indução transfinita. Tiramos primeiro o representante de α; chamemos-lhe x_1. Depois, tomamos o representante da classe consistindo de todos os membros de α excepto x_1; chamemos-lhe x_2. Este tem de ser diferente de x_1, porque todo o representante é membro da classe respectiva e x_1 está excluído desta classe. Prosseguimos de modo análogo, excluindo x_2 e tomando para x_3 o representante do que resta. Obtemos, deste modo, primeiro, uma sucessão $x_1, x_2, ..., x_n, ...$, admitindo que α não é finita. Então separamos de α a [classe dos termos da] sucessão; seja x_∞ o representante do que sobra de α. Podemos prosseguir desta maneira, até que nada reste. Os sucessivos representantes formam uma cadeia bem-ordenada que contém todos os membros de α. (O que ficou descrito acima é, naturalmente, apenas uma indicação das linhas gerais da demonstração). Esta proposição é chamada «Teorema de Zermelo» [ou «Teorema da Boa-ordenação»].

O axioma multiplicativo também é equivalente à proposição de que, de dois cardinais diferentes, um é maior do que o outro [propriedade de comparabilidade]. Se o axioma for falso, haverá cardinais μ e ν tais que μ não é nem maior nem menor do que ν, nem lhe é igual. Vimos que \aleph_1 e 2^{\aleph_0} formam possivelmente um exemplo de um tal par.102

Podem ser dadas muitas outras formas do axioma, mas as apresentadas acima são as mais importantes das conhecidas até hoje. Quanto à

102 [Prova-se, na realidade, que é sempre $\aleph_1 \leq 2^{\aleph_0}$, mas o axioma da escolha é necessário para provar que todo o cardinal infinito é um álefe.]
verdade ou falsidade do axioma em qualquer das suas formas, nada se sabe no presente.¹⁰³

São numerosas e importantes as proposições que dependem do axioma sem que se saiba se lhe são ou não equivalentes. Tome-se, primeiro, a ligação entre a adição e a multiplicação. É natural pensar que a união de ν classes mutuamente exclusivas, cada uma com μ elementos, tenha $\mu \times \nu$ elementos. Isto pode ser demonstrado quando ν é finito. Mas quando ν é infinito, não pode ser provado sem o axioma multiplicativo, excepto quando, graças a alguma circunstância especial, a existência de certas selectoras possa ser provada. É a seguinte a maneira pela qual o axioma multiplicativo entra no processo: suponhamos dois conjuntos de ν classes mutuamente exclusivas, cada uma com μ elementos, com vista a Provar que a união de um dos conjuntos tem tantos elementos quanto a união do outro. Para Provar isto, temos de estabelecer uma relação de um-para-um. Como há ν classes em cada conjunto, existe alguma relação de um-para-um entre os dois conjuntos de classes; mas o que desejamos é uma relação de um-para-um entre os seus elementos. Consideremos uma relação de um-para-um, S, entre as classes. Então, se κ e λ são os dois conjuntos de classes e α é algum membro de κ, há um membro β de λ que lhe corresponde por S. Mas α e β têm, cada, μ elementos sendo, portanto, equipotentes. Há, portanto, correspondências de um-para-um entre α e β. O problema está justamente em haver tantas. Para obtermos uma correspondência de um-para-um entre a união de κ e a união de λ, temos de escolher uma seleção de um conjunto de classes de correspondências, onde cada classe do conjunto é formada por todas as correspondências de α para β. Se κ e λ forem infinitos, não podermos, em geral, saber se tal seleção existe, a menos que

¹⁰³ [Por razões diversas, as investigações sobre questões de fundamentos, como esta, desenrolaram-se nas décadas seguintes relativamente às teorias axiomáticas de conjuntos (Zermelo-Fraenkel) ou de classes (Von Neumann-Bernays) e não relativamente à teoria «lógica» das classes de Russell. O que se passou de mais importante desde então sobre o axioma de Zermelo (ou axioma da Escolha) foi o seguinte: em 1939, Kurt Gödel demonstrou que o axioma de Zermelo é consistente relativamente aos restantes axiomas e, em 1963, Paul Cohen demonstrou que a sua negação também é consistente com os restantes axiomas. Por consequência, o axioma de Zermelo é independente dos restantes axiomas da teoria dos conjuntos (do mesmo modo que o postulado das paralelas de Euclides é independente dos restantes postulados da sua geometria). Por outro lado, o número e a variedade de proposições equivalentes e de aplicações do axioma de Zermelo, em praticamente todas as áreas da matemática, não tem parado de crescer.]
saibamos que o axioma multiplicativo é verdadeiro. Portanto, não podemos estabelecer a ligação usual entre a adição e a multiplicação.

Este facto tem várias consequências curiosas. Para começar, sabemos que $\aleph_0^2 = \aleph_0 \times \aleph_0 = \aleph_0$. É frequente encontrar, a partir deste facto, deduções de que a união de \aleph_0 classes, cada uma com \aleph_0 membros, tem, ela própria, \aleph_0 membros, mas toda tal dedução é falaz, porque não sabemos se o número de elementos de tal união é $\aleph_0 \times \aleph_0$, quer dizer, consequentemente, se é \aleph_0. Isto tem consequências na teoria dos ordinais transfinitos. É fácil provar que um ordinal que tem \aleph_0 predecessores é um daqueles a que Cantor chama da «segunda classe», isto é, tal que uma cadeia que tenha esse número ordinal terá \aleph_0 elementos no seu campo. Também é fácil ver que, se tomarmos qualquer progressão de ordinais da segunda classe, os predecessores do seu limite formam no máximo a união de \aleph_0 classes, cada uma com \aleph_0 elementos. E daqui sai — falsamente, a menos que o axioma multiplicativo seja verdadeiro — que os predecessores do limite não são em número de \aleph_0 e, portanto, que o limite é um número da «segunda classe». Equivale a dizer, supõe-se provado que qualquer progressão de ordinais de segunda classe tem um limite que é, por sua vez, um ordinal da segunda classe. Esta proposição, com o corolário de que ω_1 (o menor ordinal da terceira classe) não é o limite de progressão alguma, está envolvida na maior parte da teoria conhecida dos ordinais da segunda classe. Tendo em conta a maneira pela qual o axioma multiplicativo está envolvido, a proposição e o seu corolário não podem ser considerados provados. Podem ser ou não verdadeiros. Tudo o que podemos dizer no presente é que não sabemos. Assim, a maior parte da teoria dos ordinais da segunda classe não deve ser considerada provada.

Outra ilustração poderá ajudar a esclarecer este ponto. Sabemos que $2 \times \aleph_0 = \aleph_0$. Poderíamos supor, portanto, que a união de \aleph_0 pares tem \aleph_0 elementos. Mas, embora possamos provar que assim é, por vezes, não pode ser provado que aconteça sempre, a menos que admitamos o axioma multiplicativo. Isto é ilustrado pelo caso do milionário que comprava um par de meias sempre que comprava um par de botas, e nunca em qualquer outra ocasião, e que tinha tal paixão por comprar ambas que no fim tinha \aleph_0 pares de botas e \aleph_0 pares de meias. O problema é: Quantas botas e quantas meias tinha ele? Supor-se-ia, naturalmente, que ele teria um número de botas e um número

104 [Ver nota 103. Deve dizer-se que a maioria dos matemáticos aceita actualmente o axioma multiplicativo (ou axioma da escolha) e, com ele, todas as suas consequências.]
de meias iguais ao dobro dos números de pares de cada uma, e que, portanto, teria \(\aleph_0\) de cada, porquanto este número não é aumentado pela duplicação. Mas aí está um exemplo de dificuldade, já observada, de relacionar a união de \(\nu\) classes, cada uma com \(\mu\) elementos, com \(\mu \times \nu\). Isto pode, por vezes, ser feito; outras vezes, não. No nosso caso, pode ser feito com as botas, mas não com as meias, excepto por algum dispositivo muito artificial. Eis a razão para a diferença: entre as botas podemos distinguir esquerda e direita, e, portanto, podemos fazer uma selecção de uma de cada par — por exemplo, podemos escolher todas as botas esquerdas ou todas as botas direitas; mas, no tocante às meias, tal princípio de selecção não surge e não podemos estar certos, a não que admitamos o axioma multiplicativo, da existência de qualquer classe consistindo de uma meia de cada par. Daí o problema.

Podemos colocar a questão de outra maneira. Para provar que uma classe tem \(\aleph_0\) elementos, é necessário e suficiente encontrar algum modo de arranjar os seus elementos numa sucessão. Não há dificuldade alguma em fazer isso com as botas. Os pares são dados como pares formando um \(\aleph_0\), e, portanto, como o campo de uma sucessão. Tome-se primeiro o pé esquerdo e depois o pé direito de cada par de botas, mantendo a ordem do par inalterada; obtemos, desta maneira, uma sucessão de todas as botas. Mas, no tocante às meias, teremos de escolher arbitrariamente, em cada par, qual pé separar primeiro; e uma infinidade de escolhas arbitrárias é uma impossibilidade. A menos que possamos encontrar uma regra para escolher, isto é, uma relação selectora, não saberemos se uma selecção é sequer teoricamente possível. Naturalmente, no caso de objectos no espaço, como as meias, podemos sempre encontrar um princípio de escolha. Por exemplo, tome-se os centros de gravidade das meias: haverá pontos \(p\) no espaço tais que, em cada par, os centros de gravidade dos dois pés não estarão ambos exactamente à mesma distância de \(p\); assim, podemos escolher, de cada par, a meia que tem o seu centro de gravidade mais próximo de \(p\). Mas não há razão teórica alguma para que um método de escolha como este seja sempre possível, e o caso das meias poderá servir, com um pouco de boa vontade de parte do leitor, para mostrar como uma escolha pode ser impossível.

Cabe observar que se não fosse possível selecionar uma meia em cada par, seguir-se-ia que as meias não poderiam ser arranjadas numa sucessão, e, portanto, que não haveria \(\aleph_0\) delas. Este exemplo mostra que, se \(\mu\) é um número infinito, um conjunto de \(\mu\) pares não pode conter o mesmo número de elementos que outro conjunto de \(\mu\) pares; pois, dados \(\aleph_0\) pares de botas, há certamente \(\aleph_0\) botas, mas não
podemos estar certos disto no caso das meias, a menos que admitamos o axioma multiplicativo, ou recorramos a algum método geométrico fortuito de escolha como o que foi acima ilustrado.

Outro problema importante que envolve o axioma multiplicativo é a relação entre reflexividade e não-indutividade. Devemos estar lembrados de que mostramos no Cap. VIII que um número reflexivo tem de ser não-indutivo, mas que a propriedade recíproca (que se saiba) só pode ser provada se admitirmos o axioma multiplicativo. A maneira como isto se faz é a seguinte:

É fácil provar que uma classe reflexiva é uma classe que contém subclasses com \(\aleph_0 \) elementos. (Naturalmente, a classe poderá ter, ela própria, \(\aleph_0 \) elementos). Assim, teremos de provar, se pudermos, que, dada qualquer classe não-indutiva, é possível escolher uma progressão [sem repetições] dos seus elementos. Acontece que não há dificuldade alguma em mostrar que uma classe não-indutiva contém mais elementos do que qualquer classe indutiva, ou, o que vem a ser o mesmo, que, se \(\alpha \) é uma classe não-indutiva e \(\nu \) é um número indutivo qualquer, há subclasses de \(\alpha \) que têm \(\nu \) elementos. Podemos formar, assim, conjuntos de subclasses finitas de \(\alpha \): primeiro, uma classe sem elemento algum, depois classes com 1 elemento (tantas quantos os membros de \(\alpha \)), depois classes com 2 elementos e assim por diante. Obtemos deste modo uma progressão de conjuntos de subclasses, consistindo cada um de todas as que têm um certo número dado de elementos. Até aqui não usámos o axioma multiplicativo, mas provámos que o número de colecções de subclasses de \(\alpha \) é um número reflexivo, isto é, que se \(\mu \) é o número de membros de \(\alpha \), de modo que \(2^\mu \) é o número de subclasses de \(\alpha \) é \(2^\nu \) é o número de colecções de subclasses, então, desde que \(\mu \) seja não-indutivo, \(2^\nu \) deverá ser reflexivo. Mas isso está muito distanciado do que nos propusemos provar.

Para ir mais além deste ponto, devemos empregar o axioma multiplicative. Escolhemos uma de cada conjunto de subclasses, omitindo a subclasse que consiste somente da classe vazia. Equivale a dizer: escolhemos uma subclasse que contenha um elemento, digamos \(\alpha_1 \); uma, que contenha dois elementos, digamos \(\alpha_2 \); outra que contenha três elementos, digamos \(\alpha_3 \), e assim por diante. (Podemos fazê-lo se admitirmos o axioma multiplicativo; de outro modo, não sabemos se podemos ou não fazê-lo). Temos agora uma progressão \(\alpha_1, \alpha_2, \alpha_3, \ldots \) de subclasses de \(\alpha \), em vez de uma progressão de colecções de subclasses; chegamos, assim, um passo mais perto da nossa meta. Sabemos agora que, admitindo o axioma multiplicativo, se \(\mu \) é um número reflexivo, então \(2^\mu \) é um número não-indutivo.
O próximo passo consiste em observar que, embora não possamos estar certos de que novos membros de \(\alpha \) surgirão em qualquer etapa especificada da progressão \(\alpha_1, \alpha_2, \alpha_3, \ldots \) podemos estar seguros de que novos membros surgirão de tempos a tempos. Ilustremos esta situação. A classe \(\alpha_1 \), que consiste de um elemento, é um novo começo; representemos este elemento por \(x_1 \). A classe \(\alpha_2 \), consistindo de dois elementos, poderá ou não conter \(x_1 \); se sim, introduz um novo elemento; caso contrário, deverá introduzir dois elementos novos, digamos, \(x_2 \) e \(x_3 \). Neste caso, é possível que \(\alpha_3 \) consista de \(x_1, x_2, x_3 \) e, assim, não introduza elemento novo algum, mas, neste caso, \(\alpha_4 \) terá de introduzir um novo elemento. As primeiras \(\nu \) classes \(\alpha_1, \alpha_2, \alpha_3, \ldots \) \(\alpha_\nu \) contêm, no máximo, \(1 + 2 + 3 + \cdots + \nu \) elementos, isto é, \(\nu(\nu + 1)/2 \) elementos; assim, seria possível, se não houvesse repetição alguma nas primeiras \(\nu \) classes, prosseguir com repetições somente da \((\nu + 1) \)-ésima até à \(\nu(\nu + 1)/2 \)-ésima classe. Mas então os elementos velhos deixariam de ser suficientemente numerosos para formar uma classe seguinte com o número correcto de membros, isto é, \(\nu(\nu + 1)/2 + 1 \), logo deverão entrar novos elementos nesta altura, se não mesmo antes. Segue que, se omitirmos da nossa progressão \(\alpha_1, \alpha_2, \alpha_3, \ldots \) todas as classes compostas inteiramente de membros que tenham ocorrido em classes anteriores, teremos, ainda assim, uma progressão. Chamemos \(\beta_1, \beta_2, \beta_3, \ldots \) à nova progressão. (Teremos \(\alpha_1 = \beta_1 \) e \(\alpha_2 = \beta_2 \), porque \(\alpha_1 \) e \(\alpha_2 \) têm de introduzir novos elementos. Poderemos ou não ter \(\alpha_3 = \beta_3 \), mas, em geral, \(\beta_\mu \) será um \(\alpha_\nu \), em que \(\nu \) é algum número maior do que \(\mu \); isto é, os \(\beta \) são alguns dos \(\alpha \). Ora, estes \(\beta \) são tais que qualquer um deles, digamos \(\beta_\mu \), contém membros que não ocorreram em nemhum dos \(\beta \) anteriores. Seja \(\gamma_\mu \) a parte de \(\beta_\mu \) que consiste dos membros novos. Obtemos assim uma nova progressão \(\gamma_1, \gamma_2, \gamma_3, \ldots \) (Novamente, \(\gamma_1 \) será idêntico a \(\beta_1 \) e a \(\alpha_1 \); se \(\alpha_2 \) não contiver o único membro de \(\alpha_1 \), teremos \(\gamma_2 = \beta_2 = \alpha_2 \), mas se \(\alpha_2 \) contiver esse único membro, \(\gamma_2 \) consistirá do outro membro de \(\alpha_2 \). Esta nova progressão de \(\gamma \)'s consiste de classes mutuamente exclusivas. Portanto, uma selecção destas será uma progressão; isto é, se \(x_1 \) é o membro de \(\gamma_1, x_2 \) é o membro de \(\gamma_2, x_3 \) é o membro de \(\gamma_3 \) e assim por diante, então \(x_1, x_2, x_3, \ldots \) é uma progressão e é uma subclass de \(\alpha \). Admitindo o axioma multiplicativo, tal selecção pode ser feita. Desta forma, usando duas vezes o axioma multiplicativo podemos provar que, se o axioma é verdadeiro, todo o cardinal não-indutivo é reflexivo. Isto também poderia ser deduzido do teorema de Zermelo, de que, se o axioma é verdadeiro, toda a classe pode ser bem-ordenada; pois toda a cadeia bem-ordenada
tem de ter um campo com um número finito ou um número reflexivo de elementos.

O argumento directo acima tem uma vantagem relativamente à dedução do teorema de Zermelo, pelo facto de não exigir a verdade universal do axioma multiplicativo, mas apenas a sua veracidade quando aplicado a um conjunto de \mathbb{N}_0 classes. Pode acontecer que o axioma se verifique para \mathbb{N}_0 classes, embora não para números maiores de classes.\footnote{105} Por esta razão é melhor, quando possível, contentar-nos com a suposição mais restrita. A suposição feita no argumento directo acima é a de que um produto de \mathbb{N}_0 factores nunca é zero, a menos que um dos factores seja zero. Podemos enunciar a suposição da seguinte forma: «\mathbb{N}_0 é um número multiplicável», onde um número ν é definido como «multiplicável» quando um produto de ν factores nunca é zero, exceto se um dos factores for zero. Podemos demonstrar que um número finito é sempre multiplicável, mas não podemos provar o mesmo em relação a qualquer número infinito. O axioma multiplicativo é equivalente à suposição de que todos os números cardinais são multiplicáveis. Mas, para identificar os reflexivos com os não-indutivos, ou para tratar do problema das botas e das meias, ou para mostrar que qualquer progressão de números da segunda classe é da segunda classe, necessitamos apenas da suposição muito mais fraca de que \mathbb{N}_0 é multiplicável.

Não é improvável que haja muito para ser descoberto sobre os assuntos discutidos neste capítulo. Poderão ser encontrados casos em que as proposições que parece envolverem o axioma multiplicativo possam ser demonstradas sem ele. É concebível poder-se mostrar que o axioma multiplicativo é falso na sua forma geral. Sob este ponto de vista, o teorema de Zermelo oferece melhores esperanças: talvez se possa provar que as cadeias contínuas ou algumas ainda mais densas sejam incapazes de ter os seus elementos bem-ordenados, o que provaria a falsidade do axioma multiplicativo, em virtude do teorema de Zermelo. Mas não foi descoberto até agora método algum de obter tais resultados e o assunto permanece envolto em obscuridade.\footnote{106}

\footnote{105} [Esta é a chamada versão numerável do axioma, a qual tem já um número apreciável de aplicações em matemática.]
\footnote{106} [Ver nota 103.]
O axioma do infinito é uma suposição que pode ser assim enunciada:

«Se \(n \) é um número cardinal indutivo ao arbitrio, então existe pelo menos uma classe de indivíduos com \(n \) elementos».

Se esta suposição for verdadeira, seguir-se-á, naturalmente, que há muitas classes de indivíduos com \(n \) elementos e que o número total de indivíduos no universo não é um número indutivo. Pois, segundo o axioma, há pelo menos uma classe com \(n + 1 \) elementos, do que se depreende que há muitas classes de \(n \) elementos e que \(n \) não é o número de indivíduos no universo. Como \(n \) é número indutivo arbitrário, segue (se o nosso axioma for verdadeiro) que o número de indivíduos no universo deve exceder qualquer número indutivo. Em vista do que vimos no capítulo precedente, sobre a possibilidade de haver cardinais que não são nem indutivos nem reflexivos, não podemos deduzir, do nosso axioma, a existência de pelo menos \(\aleph_0 \) indivíduos, a menos que admitamos o axioma multiplicativo. Mas sabemos de facto que há pelo menos \(\aleph_0 \) classes de classes, porquanto os cardinais indutivos são classes de classes e formam uma progressão, se o nosso axioma for verdadeiro. A maneira pela qual surge a necessidade deste axioma pode ser assim explicada: uma das suposições de Peano é a de que não há dois cardinais indutivos com um mesmo sucessor, isto é, que não devemos ter \(m + 1 = n + 1 \), a menos que \(m = n \), se \(m \) e \(n \) são cardinais indutivos. Tivemos, no Cap. VIII, a oportunidade de usar o que é virtualmente o mesmo que a suposição de Peano acima, a saber, a de que, se \(n \) é um cardinal indutivo, \(n \) não é igual a \(n + 1 \). Poder-se-á pensar que isto se possa provar. Podemos provar que, se \(\alpha \) é uma classe indutiva e \(n \) é o número de membros de \(a \), então \(n \) não é igual a \(n + 1 \). Esta proposição é facilmente provada por indução, podendo pensar-se que implique a outra. Mas de facto isto não se dá, porquanto poderá não
existir classe alguma como \(\alpha \). O que está implícito é o seguinte: se \(n \) é um cardinal indutivo tal que há pelo menos uma classe com \(n \) membros, então \(n \) não é igual a \(n + 1 \). O axioma do infinito garante-nos (verdadeira ou falsamente) que há classes com \(n \) membros, permitindo-nos, assim, afirmar que \(n \) não é igual a \(n + 1 \). Mas sem este axioma seríamos deixados com a possibilidade de \(n \) e \(n + 1 \) serem, ambos, a classe vazia.

Ilustremos esta possibilidade com um exemplo: suponhamos que existiam exactamente nove indivíduos no universo. (Quanto ao significado da palavra «indivíduo», peço ao leitor que seja paciente). Então, os cardinais indutivos de 0 a 9 seriam como esperamos que sejam, mas 10 (definido como 9 + 1) seria a classe vazia. Cabe lembrar que \(n + 1 \) pode ser definido como se segue: \(n + 1 \) é a colecção de todas as classes que têm um elemento \(x \) tal que, quando \(x \) é retirado, resta uma classe com \(n \) elementos. Aplicando agora esta definição, vemos que, no caso suposto, \(9 + 1 \) é uma classe consistindo de nenhuma classe, isto é, é uma classe vazia. O mesmo se verificará no tocante a \(9 + 2 \) ou, de modo geral, a \(9 + n \), a menos que \(n \) seja zero. Assim, 10 e todos os cardinais subsequentes serão idênticos, porquanto serão todos a classe vazia. Em tal caso, os cardinais indutivos não formarão uma progressão, nem tão-pouco será verdadeiro que não haja dois com um mesmo sucessor, porquanto 9 e 10 serão, ambos, sucedidos pela classe vazia (sendo 10, ele próprio, a classe vazia). É para impedir tais catástrofes aritméticas que necessitamos do axioma do infinito.

Realmente, enquanto nos contentarmos com a aritmética dos inteiros finitos, e não introduzirmos nem inteiros infinitos nem classes infinitas, nem cadeias infinitas de inteiros finitos ou de razões, será possível obter todos os resultados desejados sem o axioma do infinito. Equivale a dizer que podemos lidar com a adição, a multiplicação e a exponenciação de inteiros finitos e de razões, mas não podemos lidar com inteiros infinitos ou irracionais. Assim, a teoria do transfinito e a teoria dos números reais estarão fora do nosso alcance. Devemos explicar agora como surgem estes resultados.

Admitindo que o número de indivíduos no universo é \(n \), o número de classes de indivíduos será \(2^n \). Isto é assim em virtude da proposição geral mencionada no Cap. VIII, de que o número de classes contidas numa classe que tem \(n \) membros é \(2^n \). Acontece que \(2^n \) é sempre maior do que \(n \). Portanto, o número de classes no universo é maior do que o número de indivíduos. Se supusermos, agora, que o número de indivíduos é 9, como fizemos há pouco, o número de classes será \(2^9 \).
Introdução à Filosofia Matemática

isto é, 512. Assim, se aplicamos os nossos números à contagem de classes em vez de à contagem de indivíduos, a nossa aritmética será normal até atingirmos 512: o primeiro número a ser nulo será 513. E, se avançarmos até às classes de classes, faremos ainda melhor: o número delas será 2^{512}, número que é tão grande que chega a atordoar a imaginação, porquanto tem uns 153 dígitos. E, se avançarmos ainda mais até às classes de classes de classes, obteremos um número representado por 2 elevado a uma potência que tem uns 153 algarismos; o número de dígitos desse número será igual a aproximadamente três vezes 10^{152}. Numa época de escassez de papel, não é desejável escrever este número por extenso, e, se quisermos outros ainda maiores, podemos obtê-los indo mais além na hierarquia lógica. Desta maneira, poder-se-á fazer com que qualquer cardinal indutivo encontre o seu lugar entre os números que não são nulos, bastando caminhar uma distância suficiente ao longo da hierarquia.107

No tocante às razões, temos um estado de coisas muito semelhante. Para que uma razão μ/ν tenha as propriedades esperadas, deve haver objetos de contagem em número suficiente, seja de que tipo for, para garantir que a classe vazia não surja inesperadamente. Mas isto pode ser garantido, para qualquer razão μ/ν dada, sem o axioma do infinito, simplesmente caminhando uma distância suficiente ao longo da hierarquia. Se não bastar contar indivíduos, podemos tentar contar as classes de indivíduos; se isto ainda não bastar, podemos tentar contar as classes de classes, e assim por diante. Finalmente, por poucos que sejam os indivíduos no universo, atingiremos um ponto em que haverá mais do que μ indivíduos, por maior que seja o número indutivo μ. Isto continuaria verdade mesmo que não houvesse indivíduo algum, pois existiria uma classe, a saber, a classe vazia, 2 classes de classes (a saber, a classe vazia de classes e a classe cujo único membro é a classe vazia de indivíduos), 4 classes de classes de classes, 16 na etapa seguinte, 65 536 na outra a seguir, e assim por diante. Assim, não é necessária uma suposição como o axioma do infinito para se atingir qualquer razão dada ou qualquer cardinal indutivo dado.

É somente quando desejamos lidar com a classe ou cadeia de todos os cardinais indutivos ou de razões que o axioma se torna necessário. Precisamos da classe de todos os cardinais indutivos para estabelecer a existência de \aleph_0 e da cadeia de todos eles para estabelecer a existência

de progressões: para estes resultados, é necessário sermos capazes de formar uma única classe ou cadeia na qual nenhum cardinal indutivo é nulo. Necessitamos da cadeia de todas as razões por ordem de grandezza para definir os números reais como segmentos: esta definição não dará os resultados desejados, a não ser que a cadeia de razões seja densa, o que não poderá acontecer se o número total de razões, na etapa considerada, for finito.

Seria natural supor — como eu próprio supus, em tempos — que o axioma do infinito pudesse ser demonstrado por meio de construções como as que vimos considerando. Pode-se dizer: admitamos que o número de indivíduos é n, podendo n ser 0 sem prejudicar o nosso argumento; então, se formarmos o conjunto completo de indivíduos, classes, classes de classes, etc., tomados conjuntamente, o número de elementos no nosso conjunto total será

$$n + 2^n + 2^{2n} \ldots \text{ad inf.},$$

que é \aleph_0. Assim, tomando todos os objectos juntos e não nos limitando a objectos de um só tipo, obteremos, certamente, uma classe infinita, não sendo necessário, portanto, o axioma do infinito. Assim se poderia dizer.

Mas, antes de analisarmos este argumento, a primeira coisa a observar é que há um ar de prestidigitação em seu redor: lembra por vezes o mágico a tirar coisas de dentro do chapéu. Quem lhe emprestou o chapéu está bem certo de que não havia um coelho vivo lá dentro, mas fica sem saber explicar como o coelho foi lá colocado. Também o leitor, caso possua um forte sentido da realidade, sentir-se-á convencido da impossibilidade de produzir uma coleção infinita a partir de uma coleção finita de indivíduos, embora não seja capaz de apontar o erro na construção acima. Seria incorrecto exagerar demasiadamente tais sentimentos de prestidigitação; à semelhança de outras emoções, eles poderão facilmente enganar-nos. Mas dão-nos uma base *prima facie* para analisar de muito perto qualquer argumento que as provoque. Sou de opinião que, quando o argumento acima for escrutinado, revelar-se-á a sua falsidade, embora a falácia seja subtil e de modo algum fácil de evitar consistentemente.

A falácia envolvida pode ser chamada «confusão de tipos [lógicos]». A explicação completa do assunto «tipos» exigiria um volume inteiro; além disso, o objectivo deste livro é evitar as partes dos assuntos que ainda são obscuras e controversas, isolando, para conveniência dos iniciandos, as partes que podem ser aceites como corporizando verdades matematicamente estabelecidas. E a teoria dos
Introdução à Filosofia Matemática

tipos, deve-se enfatizar, não pertence à parte acabada e certa do nosso assunto: muito desta teoria é ainda incipiente, confusa e obscura. Mas a necessidade de *alguma* doutrina dos tipos é menos duvidosa do que a forma precisa que a doutrina deva assumir; e, em ligação com o axioma do infinito, é especialmente fácil ver a necessidade de alguma doutrina como esta.

Esta necessidade resulta, por exemplo, da «contradição do maior cardinal». Vimos, no Cap. VIII, que o número de classes contidas numa determinada classe é sempre maior do que o número de membros da classe, e deduzimos não existir um número cardinal máximo. Mas, se pudéssemos, como sugerimos há pouco, fazer a soma total dos indivíduos, classes de indivíduos, classes de classes de indivíduos etc., obteríamos uma classe da qual as suas próprias sub-classes seriam membros. A classe consistindo de todos os objectos que podem ser contados, sejam eles de que tipo forem, deve, caso exista, ter um número cardinal que seja o maior possível. Como todas as suas subclasses serão seus membros, destas não poderá haver um número superior ao número de membros. Chegamos, assim, a uma contra-dição.

Quando deparei pela primeira vez com esta contradição, no ano de 1901, tentei descobrir alguma falha na prova de Cantor de que não há um cardinal maior de todos, apresentada no Cap. VIII. Aplicando esta prova à suposta classe de todos os objectos imagináveis, fui levado a uma contradição nova e mais simples, a saber:

A classe ampla considerada, que deve abranger tudo, deve abranger a si mesma como um de seus membros. Por outras palavras, se há tal coisa chamada «tudo», então todo é alguma coisa e é um membro da classe do «tudo». Mas normalmente uma classe não é um membro de si mesma. A humanidade, por exemplo, não é um homem. Forme-se agora a colecção de todas as classes que não são membros de si próprias. Esta colecção é uma classe: será ou não um membro de si mesma? Se for, será uma daquelas classes que não são membros de si mesmas, isto é, não é um membro de si mesma. Se não for, não será uma daquelas classes que não são membros de si mesmas, isto é, é membro de si mesma. Assim, das duas hipóteses — a de que seja e a de que não seja membro de si mesma — cada uma implica a sua contraditória. Isto é uma contradição.

Não é difícil elaborar contradições semelhantes *ad lib*. A solução de tais contradições pela teoria dos tipos é apresentada por inteiro em *Principia Mathematica*,108 e também, mais resumidamente, em artigos

A falácia consiste na formação do que chamamos classes «impuras», isto é, classes que não são puras quanto ao «tipo lógico». Como veremos num capítulo posterior, as classes são ficções lógicas e uma asserção que pareça referir-se a uma classe só terá significado se for capaz de tradução para uma forma na qual não seja feita menção alguma à classe. Isto impõe uma limitação às maneiras pelas quais ocorrem as coisas que são, nominal mas não realmente, os nomes das classes: uma frase ou um conjunto de símbolos em que tais pseudonomes ocorrem de maneiras errôneas não são falsos, mas estritamente destituídos de significado. A suposição de que uma classe é ou a de que não é membro de si mesma são destituídas de sentido justamente desta maneira. E, mais geralmente, supor que uma classe de indivíduos é ou não é membro de outra classe de indivíduos é insensato; e construir simbolicamente qualquer classe cujos membros não são todos do mesmo tipo na hierarquia lógica é usar os símbolos de um modo que faz com que não simbolizem coisa alguma.

Assim, se há n indivíduos e 2^n classes de indivíduos no universo, não podemos formar uma nova classe consistindo tanto de indivíduos como de classes, com $n + 2^n$ membros. Desta maneira, a tentativa de escapar ao axioma do infinito desmorona-se. Não pretendo ter explicado a doutrina dos tipos ou ter feito mais do que indicar, a traços largos, a necessidade de tal doutrina. Visei somente dizer o estritamente necessário para mostrar que não podemos provar a existência de números e classes infinitas pelos truques de magia como os que temos examinado. Restam, contudo, alguns outros métodos possíveis que devem ser considerados.

Vários argumentos que pretendem demonstrar a existência de classes infinitas são apresentados em Principles of Mathematics, §339 (p. 357). Já tratámos destes argumentos, na medida em que assumem que, se n é um cardinal indutivo, n não é igual a $n + 1$. Há um

111 [Esta é uma limitação típica da teoria dos tipos lógicos, que não tem paralelo em outras teorias não tipificadas, como a teoria axiomática dos conjuntos, de Zermelo, na qual prevalece a ideia cumulativa de conjunto: dois conjuntos de objectos quaisquer, sejam eles indivíduos, conjuntos de indivíduos, etc. podem sempre reunir-se para formar um novo conjunto.]
Introdução à Filosofia Matemática

argumento, sugerido por uma passagem do Parmênides, de Platão, segundo o qual, se existe um número como 1, então 1 tem ser; mas 1 não é idêntico a ser, e, portanto, 1 e ser são dois, e, portanto, existe um número tal como 2, e 2 junto com 1 e ser dão uma classe de três elementos e assim por diante. Esse argumento é falacioso, em parte porque «ser» não é um termo que tenha qualquer significado definido, e, mais ainda, porque, se fosse inventado um significado definido para «ser», constatar-se-ia que os números não têm ser — são, na realidade, o que se chama «ficções lógicas», como veremos quando considerarmos a definição de classe.

O argumento de que o número de números de 0 a n (ambos incluídos) é n + 1 depende de que até n e incluindo n nenhum número é igual ao seu sucessor, o que, como vimos, não será sempre verdade se o axioma do infinito for falso. Deve ficar entendido que a equação n = n + 1, que pode ser verdadeira para um n finito se n exceder o número total de indivíduos no universo, é bem diferente da mesma equação quando aplicada a um número reflexivo. Quando aplicada a um número reflexivo, ela significa que, dada uma classe de n elementos, esta classe é «equipotente» àquela que se obtém pela adjunção de mais outro elemento. Mas quando aplicada a um número demasiadamente grande para o mundo real, ela significa meramente que não há classe alguma de n indivíduos nem de n + 1 indivíduos; não significa que, se percorrermos suficientemente a hierarquia dos tipos para garantir a existência de uma classe de n elementos, constataremos então ser esta classe «equipotente» a uma de n + 1 elementos, porque, se n for indutivo, isso não acontece, independentemente da verdade ou falsidade do axioma do infinito.

Há um argumento empregue tanto por Bolzano112 como por Dedekind113 paraprovar a existência de classes reflexivas. Resumidamente, é o argumento seguinte: um objeto não é idêntico à ideia do objecto, mas há (pelo menos no reino da existência) uma ideia de algum objecto. A relação entre um objecto e a ideia que se tenha dele é de um-para-um e as ideias são apenas alguns dos objectos. Portanto, a relação «ideia de» constitui uma reflexão da classe de todos os objectos numa parte de si mesma, a saber, na parte que consiste de ideias. Consequentemente, a classe dos objectos e a classe das ideias são, ambas, infinitas. Este argumento é interessante, não apenas por si

113 R. Dedekind, Was sind und was sollen die Zahlen?, §66. [Ver nota 10, p. 17.]
XIII. O Axioma do infinito e os tipos lógicos

mesmo, mas também porque os erros nele contidos (ou o que julgo serem erros) são de um tipo que é instrutivo notar. O principal erro consiste em admitir que haja uma ideia de cada objecto. É, naturalmente, excessivamente difícil decidir o que se quer dizer por «ideia»; mas admitamos que o sabemos fazer. Devemos, então, supor que, começando (digamos) com Sócrates, há a ideia de Sócrates, e assim por diante, *ad infinitum*. Mas é claro que tal não se dá no sentido de todas estas ideias terem existência empírica real na mente das pessoas. Depois da terceira ou quarta etapas, elas tornam-se míticas. Para poder sustentar o argumento, as pretensas «ideias» devem ser ideias platônicas situadas nos céus, pois por certo que não se encontram na Terra. Mas então torna-se logo duvidoso que existam tais ideias. Para que possamos saber que existem, devemos basear-nos em alguma teoria lógica, que prove ser necessário a uma coisa, que exista uma ideia dela. Certamente que não podemos obter este resultado empiricamente, ou aplicá-lo, como o faz Dedekind, ao «meine Gedankenwelt» — o mundo dos meus pensamentos.

Se estivéssemos interessados em examinar plenamente a relação entre ideia e objecto teríamos de entrar em várias indagações psicológicas e lógicas que não são relevantes para o nosso objectivo principal. Mas alguns outros pontos adicionais devem ser observados. Para que «ideia» possa ser logicamente entendida, poderá ser idêntica objecto ou poderá corresponder a uma descrição (num sentido que será explicado em capítulo subsequente). No primeiro caso, o argumento falha, porque foi essencial à prova da reflexividade que objecto e ideia fossem distintos. No segundo caso, o argumento também falha, porque a relação entre objecto e descrição não é de um-para-um: há inumeráveis descrições correctas de qualquer objecto dado. Sócrates (por exemplo) pode ser descrito como «mestre de Platão» ou como «o filósofo que tomou a cicuta» ou como «marido de Xantipa». Considerando as hipóteses restantes, para que «ideia» possa ser psicologicamente interpretada, deve-se sustentar que não há nenhuma entidade psicológica definida que possa ser chamada *a* ideia do objecto: há inumeráveis crenças e atitudes, cada uma das quais poderia ser chamada *uma* ideia do objecto no sentido em que podemos dizer «a minha ideia de Sócrates é bem diferente da sua», mas não há entidade central alguma (excepto o próprio Sócrates) a fundir todas as «ideias de Sócrates», e não há, portanto, uma relação de um-para-um entre ideia e objecto, como é sugerido pelo argumento. Naturalmente, nem é tão-pouco psicologicamente verdadeiro, como já vimos, que haja ideias (em qualquer sentido por mais amplo que seja) de mais do que uma diminuta porção de coisas do mundo. Por todas estas razões, o
argumento acima a favor da existência lógica das classes reflexivas deve ser rejeitado.

Poder-se-á pensar que, diga-se o que se disser a favor dos argumentos lógicos, os argumentos empíricos deriváveis do espaço e tempo, a diversidade de cores, etc., são suficientes para provar a existência real de um número infinito de coisas particulares. Não creio nisto. Não temos razão alguma, a não ser o preconceito, para acreditar na extensão infinita do espaço e do tempo, pelo menos no sentido em que o espaço e o tempo são factos físicos e não ficções matemáticas. Encaramos naturalmente o espaço e o tempo como contínuos, ou, pelo menos, densos: mas isto é também preconceituoso. A teoria dos «quanta», na física, seja ela falsa ou verdadeira, ilustra o facto de a física nunca poder ter a prova da continuidade, embora possa, bem possivelmente, ter disso uma refutação. Os sentidos não são suficientemente precisos para distinguir entre movimento contínuo e sucessão discreta rápida, como qualquer um poderá descobrir numa sala de cinema. Um universo no qual todo o movimento consistisse de uma cadeia de pequenas sacudidelas finitas seria empiricamente indistinguível de outro no qual o movimento fosse contínuo. A defesa adequada destas teses tomaria muito espaço; de momento, estou meramente a sugerir-las à consideração do leitor. Se forem válidas, não há nenhuma razão empírica para acreditar que o número de coisas particulares no universo seja infinito, e segue-se também que nunca poderá haver uma tal razão; resulta ainda que não há no presente razão empírica alguma para se acreditar que aquele número é finito, embora seja teoricamente concebível que algum dia possa haver indícios nesse sentido, embora não conclusivos.

Do facto de o infinito não ser auto-contraditório, mas também não ser logicamente demonstrável, devemos concluir que nada se pode saber a priori quanto a ser finito ou infinito o número de coisas no universo. A conclusão é, portanto, adoptando uma terminologia leibnitziana, a de que alguns dos mundos possíveis são finitos, alguns infinitos, e não temos meios de saber a qual desses dois tipos pertence realmente o nosso mundo. O axioma do infinito será verdadeiro em alguns mundos possíveis e falso noutros; não podemos dizer se é ou não verdadeiro neste mundo.

Em todo este capítulo, os sinónimos «indivíduo» e «coisa particular» foram usados sem explicação. Seria impossível explicá-los adequadamente excepto numa dissertação sobre a teoria dos tipos lógicos mais longa do que seria adequado no presente trabalho, mas, antes de deixarmos este assunto, algumas palavras poderão contribuir um
XIII. O Axioma do infinito e os tipos lógicos

pouco para diminuir a obscuridade que de outro modo envolveria o significado destas palavras.

Numa frase comum, podemos distinguir um verbo, que exprime um atributo ou relação, dos substantivos que exprimem o sujeito do atributo ou os termos da relação. «César viveu» invoca um atributo de César; «Bruto matou César» exprime uma relação entre Bruto e César. Se usarmos a palavra «sujeito» no sentido geral, podemos chamar a Bruto e César os sujeitos desta proposição: o facto de Bruto ser gramaticalmente o sujeito e César o objecto é logicamente irrelevante, porquanto a mesma situação pode ser expressa pelas palavras «César foi morto por Bruto», em que César é o sujeito gramatical. Teremos, assim, num tipo mais simples de proposição, um atributo ou relação entre um ou entre dois ou mais «sujeitos» no sentido amplo. (Uma relação pode ter mais de dois termos: por exemplo, «A dá B a C» é uma relação entre três termos). Mas acontece frequentemente, num exame mais cuidado, constatar-se que os sujeitos aparentes não são realmente sujeitos, mas são capazes de análise; a única consequência disto é, contudo, que novos sujeitos tomam o seu lugar. Também acontece que o verbo pode ser, gramaticalmente, tornado sujeito: por exemplo, podemos dizer que «matar é uma relação que existe entre Bruto e César». Mas em tais casos a gramática conduz ao erro e numa asserção directa, seguindo as regras que devem guiar a gramática filosófica, Bruto e César aparecerão como os sujeitos e matar como o verbo.

Somos assim levados à concepção de que os termos que, quando ocorrem em proposições, podem somente ocorrer como sujeitos e nunca de qualquer outra maneira. Isto é parte da velha definição escolástica de substância; mas a persistência através dos tempos, que pertenceu àquela noção, não forma parte da noção de que nos estamos a ocupar. Definiremos «nomes próprios» como sendo os termos que só podem ocorrer como sujeitos nas proposições (usando «sujeito» no sentido estendido há pouco explicado). Definiremos ainda «indivíduos» ou «particulares» como os sujeitos que podem ser designados por nomes próprios. (Seria melhor defini-los directamente, e não por meio do tipo de símbolos pelos quais são simbolizados; mas para fazê-lo teríamos de mergulhar mais fundo na metafísica do que é aqui necessário). É possível, naturalmente, que haja uma regressão interminável: que, o que pareça um particular, seja realmente, após um estudo apurado, alguma classe ou alguma coisa complexa. Se for este o caso, o axioma do infinito deve, sem dúvida, ser verdadeiro. Mas se não for o caso, deve ser teoricamente possível à análise atingir objectos últimos, e são estes que fornecem o significado de «particulares» e
«indivíduos». É ao número destes que se supõe aplicar-se o axioma do infinito. Se for verdadeiro a seu respeito, sê-lo-á a respeito da sua classe, e a classes de classes deles e assim por diante; analogamente, se for falso a seu respeito, sê-lo-á através de toda esta hierarquia. Portanto, é mais natural enunciar o axioma relativamente a eles do que a respeito de qualquer etapa na hierarquia. Mas parece não haver método algum para se saber se o axioma é verdadeiro ou falso.
CAPÍTULO XIV

Incompatibilidade e teoria da dedução

Já explorámos, algo apressadamente, a parte da filosofia da matemática que não exige um exame crítico da noção de classe. Todavia, defrontámo-nos, no capítulo precedente, com problemas que tornam imperativo um tal exame. Antes de empreendê-lo, devemos considerar certas outras partes da filosofia da matemática que temos ignorado até agora. Num tratamento sintético, as partes pelas quais nos interessaram agora vêm primeiro: são mais fundamentais do que qualquer outra coisa que tenhamos discutido até aqui. São três os assuntos de que nos ocuparemos antes de discutirmos a teoria das classes, a saber: (1) a teoria da dedução, (2) funções proposicionais, (3) descrições. Destas, a terceira não está logicamente pressuposta na teoria das classes, mas é um exemplo mais simples da espécie de teoria que é necessário para se lidar com as classes. É o primeiro assunto, a teoria da dedução, que nos ocupará no presente capítulo.

A matemática é uma ciência dedutiva: a partir de certas premissas, chega, por um estrito processo de dedução, aos vários teoremas que a constituem. É verdade que, no passado, as deduções matemáticas tinham com frequência falta de rigor; é também verdade que o rigor absoluto é um ideal dificilmente alcançável. Não obstante, se faltar rigor numa demonstração matemática, ela será, sob esse aspecto, defeituosa; não constitui defesa válida alegar que o senso comum mostra que o resultado é correcto, pois se tivéssemos de confiar nisso, seria melhor abandonar completamente o raciocínio do que invocar a falácia em defesa do senso comum. Após o estabelecimento das premissas, nenhum apelo ao senso comum, ou «intuição» ou qualquer outra coisa que não a estrita lógica dedutiva, deve ser necessária à matemática.

Kant, que observou que os geómetras da sua época não conseguiam demonstrar os seus teoremas somente por meio do raciocínio, antes faziam apelo às figuras, inventou uma teoria do raciocínio mate-
mático segundo a qual a dedução nunca é estritamente lógica, exigindo sempre o apoio do que se chama «intuição». Toda a tendência matemática moderna, com a sua crescente exigência de rigor, tem sido contrária a esta teoria kantiana. As coisas matemáticas dos dias de Kant que não podem ser demonstradas, não podem ser conhecidas — por exemplo, o axioma das paralelas.\footnote{Presumível referência ao axioma de paralelismo de Euclides, que se provou, no último quartel do séc. XIX (E. Beltrami, F. Klein, 1872) ser independente dos restantes postulados da geometria dos Elementos. O termo «conhecidas» refere-se presumivelmente à possibilidade de verificação experimental do axioma no mundo físico, questão que também ocupou os geômetras e físicos durante milénios.}

O que se pode conhecer, em matemática e por métodos matemáticos, é o que pode ser deduzido da lógica pura.\footnote{Se admitirmos, claro está, o ponto de vista reducionista (da matemática à lógica) defendido por Russell. Menos arriscado e sem riscos de comprometimento doutrinário, hoje em dia, seria dizer «pela lógica pura» a partir de axiomas matemáticos.}

Qualquer outra coisa que deva pertencer ao conhecimento humano deve ser apurado de outro modo — empiricamente, através dos sentidos ou através da experiência sob alguma forma, mas não \emph{a priori}. As bases positivas desta tese são encontradas nos Principia Mathematica, passim; uma defesa controversa da mesma é feita nos Principles of Mathematics.\footnote{Uma reimpressão recente deste livro pode ser encontrada na editora nova-iôrquina Dover, 1996.} Nada mais podemos fazer, aqui, do que remeter o leitor para estes trabalhos, porquanto o assunto é vasto de mais para um tratamento apressado. Entretanto, admitiremos que toda a matemática é dedutiva, e passamos a investigar o que está envolvido na dedução.

No processo dedutivo, temos uma ou mais proposições chamadas \emph{premissas}, das quais inferimos uma proposição chamada \emph{conclusão}. Para os nossos propósitos, será conveniente, quando houver originalmente várias premissas, fundi-las numa única proposição, para que possamos falar de \emph{a premissa} e de \emph{a conclusão}. Assim, podemos considerar a dedução como um processo pelo qual passamos do conhecimento de certa proposição, a premissa, para o conhecimento de uma certa outra proposição, a conclusão. Mas não devemos considerar tal processo uma dedução \emph{lógica}, a menos que ela seja \emph{correcta}, isto é, a menos que haja uma tal relação entre premissa e conclusão que tenhamos o direito de acreditar na conclusão se soubermos que a premissa é verdadeira. É nesta relação que reside o interesse principal da teoria lógica da dedução.
XIV. Compatibilidade e a teoria da dedução

Para podermos inferir validamente a verdade de uma proposição, temos de saber que certa outra proposição é verdadeira e que há entre as duas uma relação do tipo chamado «implicação», isto é, que (como costumamos dizer) a premissa «implica» a conclusão. (Definiremos esta relação dentro em pouco). Ou podemos saber que uma certa outra proposição é falsa e que há uma relação entre as duas, do tipo chamado «disjunção», expressa por «p ou q»,[117] de modo que o conhecimento de que uma é falsa permite-nos concluir que a outra é verdadeira. Mas também pode ser que estejamos interessados em determinar a falsidade de alguma proposição e não a sua veracidade. Isto poderá ser concluído da verdade de outra proposição, desde que saibamos serem as duas incompatíveis, isto é, que, se uma é verdadeira, a outra é falsa. Também poderá ser determinada da falsidade de outra proposição, nas mesmas circunstâncias em que a verdade da outra poderia ter sido concluída da verdade da primeira; isto é, podemos concluir a falsidade de q da falsidade de p, quando q implica p. Todos esses quatro casos são casos de inferência. Quando nos fixamos na inferência, parece tomar-se a «implicação» como relação primitiva fundamental, por ser esta a relação que deve existir entre p e q para que possamos inferir a verdade de q da verdade de p. Mas, por razões técnicas, esta não é a melhor noção primitiva a escolher. Antes de passarmos às noções primitivas e definições, consideraremos ainda as várias funções das proposições sugeridas pelas relações entre as proposições acima mencionadas.

Podemos considerar a seguir a disjunção, «p ou q». Trata-se de uma função cujo valor lógico é verdade quando p é verdadeira e também quando q o é, mas é falsidade quando ambas p e q são falsas.

Consideremos a seguir a conjunção, «p e q». Esta função tem o valor lógico verdade quando p e q são ambas verdadeiras; caso contrário, tem o valor lógico falsidade.

Tomemos a seguir a incompatibilidade, isto é, «p e q não são ambas verdadeiras». Trata-se da negação da conjunção; é também a disjunção das negações de p e q, isto é, a função «não-p ou não-q».

[117] Usaremos as letras p, q, r, s, t para denotar proposições arbitrárias.
[118] Esta expressão é devida a Frege.
O seu valor lógico é verdade quando \(p \) é falsa e, também, quando \(q \) é falsa; o seu valor lógico é falsidade quando \(p \) e \(q \) são ambas verdadeiras.

Consideremos, por último, a implicação, isto é, \(\text{«} p \text{ implica } q \text{»} \), ou, \(\text{«} se p, então } q \text{»} \). Isto deve ser entendido no mais amplo sentido que nos permita inferir a verdade de \(q \) se conhecemos a verdade de \(p \). Assim, interpretamos-la como significando: \(\text{«} A \text{ menos que } p \text{ seja falsa, } q \text{ será verdadeira», ou então, } \text{«} p \text{ é falsa ou } q \text{ é verdadeira»} \). (O facto de «implica» ser capaz de outros significados não nos interessa; este é o significado que mais nos convém). Equivale a dizer, \(\text{«} p \text{ implica } q \text{»} \) deve significar \(\text{«} \text{não}-p \text{ ou } q \text{»} \): o seu valor lógico será verdade se \(p \) for falsa, e também se \(q \) for verdadeira, e será falsidade se \(p \) for verdadeira e \(q \) falsa.

Temos assim cinco funções: negação, disjunção, conjunção, incompatibilidade e implicação. Poderíamos ter acrescentado outras, como, por exemplo, a de negação conjunta, \(\text{«} \text{não}-p \text{ e não}-q \text{»} \) [ou rejeição, \(\text{«} \text{nem-nem»} \)] mas as cinco acima bastarão. A negação difere das outras quatro pelo facto de ser uma função de \textit{uma} propoção, enquanto as outras são funções de \textit{duas}. Mas todas cinco concordam no facto de os seus valores lógicos dependerem apenas dos das proposições que são os seus argumentos. Dada a verdade ou a falsidade de \(p \), ou de \(p \) e \(q \) (conforme o caso), são-nos dadas a verdade ou a falsidade da negação, disjunção, conjunção, incompatibilidade, ou implicação. Uma função de proposições que tem esta propriedade é chamada «função de verdade».119

O significado de uma função de verdade fica completamente estabelecido pelo enunciado das circunstâncias sob as quais ela é

119 [Utilizamos a seguir tabelas de verdade para sintetizar a atribuição dos valores lógicos \(\text{V} \) (verdade) e \(\text{F} \) (falsidade) a \(p \) e \(q \), e às proposições compostas \(\neg p \) (não-\(p \), também simbolizado por \(\overline{p} \)), \(p \vee q \) (\(p \) ou \(q \)), \(p \wedge q \) (\(p \) e \(q \)), \(p \rightarrow q \) (não-\(p \) e não-\(q \)):

<table>
<thead>
<tr>
<th>(p)</th>
<th>(\neg p)</th>
<th>(p)</th>
<th>(p \vee q)</th>
<th>(p \wedge q)</th>
<th>(p \rightarrow q)</th>
<th>(p \lor q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{V})</td>
<td>(\text{F})</td>
<td>(\text{V})</td>
<td>(\text{V})</td>
<td>(\text{V})</td>
<td>(\text{V})</td>
<td>(\text{F})</td>
</tr>
<tr>
<td>(\text{F})</td>
<td>(\text{V})</td>
<td>(\text{F})</td>
<td>(\text{F})</td>
<td>(\text{F})</td>
<td>(\text{F})</td>
<td>(\text{V})</td>
</tr>
</tbody>
</table>

As tabelas de verdade tiveram origem nos trabalhos de G. Frege e C.S. Peirce nos anos 80 do séc. XIX, e adquiriram a forma presente por volta de 1922 através de E. Post e L. Wittgenstein, que popularizou o método no seu famoso Tractatus (ver nota 150, p. 200).]
verdadeira ou falsa. A função «não-p», por exemplo, é simplesmente a função de p que é verdadeira quando p é falsa e falsa quando p é verdadeira: não há qualquer outro significado que lhe possa ser atribuído. O mesmo se aplica a «q ou r» e às restantes. Segue que duas funções de verdade que têm o mesmo valor lógico para todos os valores do argumento são indistinguíveis. Por exemplo, «p e q» é a negação de «não-p ou não-q» e vice-versa; assim, qualquer das duas pode ser definida como a negação da outra. Não há qualquer outro significado adicional numa função de verdade além das condições sob as quais ela é verdadeira ou falsa.

É claro que as cinco funções de verdade acima não são todas independentes. Podemos definir algumas delas em termos de outras. Não é muito difícil reduzir o número a duas; as duas escolhidas em Principia Mathematica são negação e disjunção. A implicação é então definida como «não-p ou q»; a incompatibilidade, como «não-p ou não-q»; a conjunção, como a negação da incompatibilidade. Mas Sheffer120 demonstrou que podemos contentar-nos com uma noção primitiva para todas as cinco [a incompatibilidade, ou a negação conjunta] e Nicod121 demonstrou que isto permite reduzir as proposições primitivas requeridas pela teoria da dedução a dois princípios não formais e um formal. Com este propósito, podemos tomar para função indefinível a incompatibilidade ou a negação conjunta. Escolheremos a primeira.

A nossa noção primitiva é, agora, uma certa função de verdade chamada incompatibilidade, que denotaremos por \(p \oplus q \). A negação pode ser imediatamente definida como a incompatibilidade de uma proposição consigo mesma, isto é, «não-p» é definida como «p \oplus p\). A disjunção é a incompatibilidade de não-p e não-q, isto é, \((p \oplus q) \). A implicação é a incompatibilidade de p e não-q, isto é, \(p \oplus q\). A conjunção é a negação da incompatibilidade, isto é, \(q \oplus q\). Assim, todas as outras quatro funções são definidas em termos da incompatibilidade.

É óbvio que não há limitações à construção de funções de verdade, quer pela introdução de um maior número de argumentos quer pela repetição de argumentos. O que nos interessa é a relação deste assunto com a inferência.

Se sabemos que \(p \) é verdadeira e que \(p \) implica \(q \), podemos afirmar \(q \). Inevitavelmente há sempre algo psicológico na inferência: a inferência é um método pelo qual chegamos a um novo conhecimento, e o que não é psicológico a seu respeito é a relação que nos permite inferir correctamente; mas a passagem real da asserção de \(p \) para a asserção de \(q \) é um processo psicológico e não devemos procurar representá-lo em termos puramente lógicos.

Na prática matemática, quando efectuamos inferências, temos sempre alguma expressão que contenha proposições variáveis, digamos \(p \) e \(q \), que sabemos, em virtude de sua forma, ser verdadeira para todos os valores de \(p \) e \(q \); temos também alguma outra expressão, parte da primeira, que também sabemos verdadeira para todos os valores de \(p \) e \(q \); e, em virtude dos princípios da inferência, podemos desprezar esta parte da nossa expressão original, a afirmar o que restar. Esta consideração algo abstracta pode-se tornar mais clara mediante alguns exemplos.

Admitamos conhecer os cinco princípios formais da dedução enumerados em *Principia Mathematica*. (Nicod reduziu-os a um, mas, como se trata de uma proposição complicada, começaremos com as cinco). Estas cinco proposições são:

1. \(p \) ou \(p' \) implica \(p \) — isto é, se \(p \) é verdadeira ou \(p' \) é verdadeira, então \(p \) é verdadeira.
2. \(q \) implica \(p' \) ou \(q' \) — isto é, a disjunção de \(p' \) ou \(q' \) é verdadeira quando uma de suas alternativas é verdadeira.
3. \(p' \) ou \(q' \) implica \(q' \) ou \(p' \). Isto não seria exigido se tivéssemos uma notação teoricamente mais perfeita, porquanto na concepção de disjunção não está envolvida ordem alguma, de modo que \(p' \) ou \(q' \) e \(q' \) ou \(p' \) deviam ser idênticas. Mas como os nossos símbolos, em qualquer forma conveniente, introduzem inevitavelmente uma ordem, necessitamos de suposições apropriadas para mostrar que a ordem é irrelevante.
4. Se \(p \) é verdadeira ou \(q' \) ou \(r' \) é verdadeira, então \(q \) é verdadeira ou \(p' \) ou \(r' \) é verdadeira. (A subtil troca nesta proposição serve para aumentar o seu poder dedutivo).
5. Se \(q \) implica \(r \), então \(p' \) ou \(q' \) implica \(p' \) ou \(r' \).\(^{122}\)

\(^{122}\) [No simbolismo introduzido na nota 119, estes cinco princípios são:

\[
egin{align*}
(1) & \quad (p \lor p) \rightarrow p; \\
(2) & \quad q \rightarrow (p \lor q); \\
(3) & \quad (p \lor q) \rightarrow (q \lor p); \\
(4) & \quad (p \lor (q \lor r)) \rightarrow (q \lor (p \lor r)); \\
(5) & \quad (q \rightarrow r) \rightarrow ((p \lor q) \rightarrow (p \lor r)).
\end{align*}
\]
Esses são os princípios formais de dedução empregues em *Principia Mathematica*. Um princípio formal de dedução tem duplo uso, e é para tornar isto claro que enunciámos as cinco proposições acima. Tem um uso como a premissa de uma inferência e um uso para estabelecer o facto de que a premissa implica a conclusão. No esquema de uma inferência temos uma proposição p e uma proposição «p implica q», das quais inferimos q. Mas quando estamos interessados nos princípios de dedução, o nosso aparato de proposições primitivas tem de fornecer tanto a p como a «p implica q» das nossas inferências. Quer dizer, as nossas regras de dedução devem ser usadas não apenas como regras, que é o seu uso para estabelecer «p implica q», mas também como premissas substantivas, isto é, como a p do nosso esquema. Suponhamos, por exemplo, que desejamos provar que se p implica q, então se q implica r então p implica r. Temos aqui uma relação entre três proposições que exprimem implicações. Façamos:

$$p_1 = p \text{ implica } q, \quad p_2 = q \text{ implica } r, \quad p_3 = p \text{ implica } r.$$

Temos então de provar que p_1 implica que p_2 implica p_3. Tome-se agora o quinto de nossos princípios acima, substituindo p por não-p, lembrando que «não-p ou q» é, por definição, o mesmo que «p implica q». Assim, o nosso quinto princípio produz:

«Se q implica r, então “p implica q” implica “p implica r”», isto é, «p_2 implica que p_1 implica p_3». Chame-se a esta proposição A.

Mas o quarto dos nossos princípios, quando substituirmos p e q por não-p e não-q, respectivamente, e lembrarmos a definição de implicação, torna-se:

«Se p implica que q implica r, então q implica que p implica r».

Escrevendo p_2 no lugar de p, p_1 no lugar de q e p_3 no lugar de r, surge a seguinte forma:

«Se p_2 implica que p_1 implica p_3, então p_1 implica que p_2 implica p_3». Chame-se a esta proposição B.

[Esta regra ou esquema inferencial tem o nome *modus ponendo pollens* (abreviadamente, MP), e pode ser representada simbolicamente por

$$(\text{MP}) \quad \frac{p, p \rightarrow q}{q},$$

que se lê: «de p e $p \rightarrow q$ infere-se q», ou «p e $p \rightarrow q$, portanto q».]
Finalmente provamos, por meio do nosso quinto princípio, que:

«p₂ implica que p₁ implica p₁», a que chamamos A.

Temos aqui, pois, um exemplo do esquema da inferência, porquanto A representa a p de nosso esquema, e B representa a «p implica q». Portanto, chegamos a q, a saber:

«p₁ implica que p₂ implica p₂»,

que era a proposição a ser provada. Nesta prova, a adaptação do nosso quinto princípio, que fornece A, ocorre como uma premissa substantiva; enquanto a adaptação do nosso quarto princípio, que fornece B, é usada para dar a forma da inferência. Os usos formais e materiais das premissas na teoria da dedução estão intimamente ligados, e não é assim muito importante mantê-los separados, desde que nos apercebamos de que são, em teoria, distintos.

O mais antigo método de chegar a novos resultados a partir de uma dada premissa é o que foi ilustrado na dedução acima, mas que dificilmente poderá ser, ele próprio, chamado dedução. As proposições primitivas, sejam elas quais forem, devem ser supostas como afirmadas para todos os valores possíveis das proposições variáveis p, q e r que nelas ocorrem. Podemos, portanto, substituir (digamos) p por qualquer expressão cujo valor é sempre uma proposição, por exemplo não-p, «s implica t» e assim por diante. Por meio de tais substituições, obtemos realmente conjuntos de casos especiais da nossa proposição original, mas, do ponto de vista prático, obtemos proposições que são virtualmente novas. A legitimidade das substituições deste tipo tem de ser garantida por meio de um princípio não formal de inferência.

Podemos agora estabelecer o único princípio formal de inferência ao qual Nicod reduziu os cinco acima referidos. Com este propósito, mostraremos primeiro como certas funções de verdade podem ser

124 [Uma apresentação esquemática de todo o raciocínio, onde já trocámos ¬s ∨ t por s → t (s e t quaisquer) e efectuámos as outras substituições indicadas no texto p₁ = (p → q), p₂ = (q → r), p₃ = (p → r):

1. (q → r) → ((p → q) → (p → r)) = A, (5)

2. ((q → r) → ((p → q) → (p → r))) → (((p → q) → ((q → r) → (p → r)))) = B, (4)

3. (p → q) → ((q → r) → (p → r)) = 1, 2 MP.]

125 Nenhum princípio desta natureza é enunciado em Principia Mathematica ou no artigo de M. Nicod acima mencionado. Mas isto parece ter sido uma omissão.
XIV. Compatibilidade e a teoria da dedução

definidas em termos da incompatibilidade. Já vimos que:

\[p(q|q) \text{ significa } \langle p \text{ implica } q \rangle, \]

Observamos agora que:

\[p(q|r) \text{ significa } \langle p \text{ implica } q \text{ e } r \rangle, \]

visto que esta expressão significa «p é incompatível com a incompatibilidade de q e r», isto é, «p implica que q e r não são incompatíveis», isto é, «p implica que q e r são ambas verdadeiras» — pois, como vimos, a conjunção de q e r é a negação da sua incompatibilidade.

Observe-se a seguir que \(t|t\) significa «t implica t». Trata-se de um caso particular de \(p(q|q)\).

Escrevamos \(\overline{s} \) para representar a negação de \(s\); assim, \(\overline{p}s \) significará a negação de \(p|s\), isto é, significará a conjunção de \(p \) e \(s \).

Resulta que:

\[(s|q)|\overline{p}s \]

exprime a incompatibilidade de \(s|q \) com a conjunção de \(p \) e \(s \); por outras palavras, declara que se \(p \) e \(s \) são ambas verdadeiras, então \(s|q \) é falsa, isto é, \(s \) e \(q \) são ambas verdadeiras; ainda mais simplesmente, declara que \(p \) e \(s \) conjuntamente implicam \(s \) e \(q \) conjuntamente.

Ponhamos agora

\[P = p|(q|r), \]
\[\pi = t|(t|t), \]
\[Q = (s|q)|\overline{p}s. \]

Ora, o único princípio formal de Nicod é:

\[P|(\pi|Q), \]

por outras palavras, \(P \) implica tanto \(\pi \) como \(Q \).

Além disso, ele emprega um princípio não formal pertencente à teoria dos tipos (com o qual não temos que preocupar-nos), e outro correspondente ao princípio de que, dado \(p \) e dado que \(p \) implica \(q \), podemos afirmar \(q \) [ver nota 123, p. 151]. Este princípio é:

«Se \(p(q|q) \) é verdadeira e \(p \) é verdadeira, então \(q \) é verdadeira». Deste aparato resulta toda a teoria da dedução, excepto no que toca à dedução baseada na existência ou na universalidade das «funções proposicionais», que consideraremos no capítulo seguinte.
Se não me engano, há uma certa confusão na mente de alguns autores no tocante à relação, entre proposições, em virtude da qual uma inferência é válida. Para que seja válido inferir \(q \) de \(p \), é somente necessário que \(p \) seja verdadeira e que a proposição «não-\(p \) ou \(q \)» seja verdadeira. Sempre que isto acontece, \(q \) é forçosamente verdadeira. Mas a inferência só terá lugar de facto quando a proposição «não-\(p \) ou \(q \)» for conhecida para além do conhecimento de não-\(p \) ou do conhecimento de \(q \). Sempre que \(p \) for falsa, «não-\(p \) ou \(q \)» será verdadeira, mas não será inútil à inferência, a qual exige que \(p \) seja verdadeira. Sempre que já se saiba ser \(q \) verdadeira, naturalmente saber-se-á também ser «não-\(p \) ou \(q \)» verdadeira, mas isto é também inútil à inferência, porquanto \(q \) já é conhecida, não necessitando, portanto, ser inferida. Na realidade, só há lugar à inferência quando a disjunção «não-\(p \) ou \(q \)» pode ser conhecida sem que já saibamos qual das duas alternativas torna a disjunção verdadeira. Ora, as circunstâncias sob as quais isto acontece são aquelas em que certas relações de forma existem entre \(p \) e \(q \). Por exemplo, sabemos que se \(r \) implica a negação de \(s \), então \(s \) implica a negação de \(r \). Entre «\(r \) implica não-\(s \)» e «\(s \) implica não-\(r \)» há uma relação formal que nos permite saber que a primeira implica a segunda sem termos de saber antes que a primeira é falsa ou saber que a segunda é verdadeira. É sob tais circunstâncias que a relação de implicação é útil na prática para efectuar inferências.

Mas esta relação formal só é exigida para que possamos saber que a premissa é falsa ou a conclusão é verdadeira. É a verdade de «não-\(p \) ou \(q \)» que se exige para a validade da inferência; o que se exige adicionalmente só é necessário à praticabilidade da inferência. O Professor C. I. Lewis\(^{126}\) estudou em especial a relação formal mais restrita que podemos chamar «derivabilidade formal» [ou «implicação estrita»]. Ele sugere que a relação mais ampla, a expressa por «não-\(p \) ou \(q \)», não deve ser chamada «implicação». Isto é, todavia, uma questão de palavras. Se o uso que fizermos das palavras for consistente, pouco importa como a definimos. É o seguinte o ponto essencial de diferença entre a teoria que advogo e a teoria proposta pelo Professor Lewis: ele afirma que, quando uma proposição \(q \) é «formalmente dedutível» de outra, \(p \), a relação que percebemos haver entre elas é a que ele chama «implicação estrita», que não é a relação

expressa por «não-\(p\) ou \(q\)»; mas uma relação mais estreita, que só se verifica quando há certas ligações formais entre \(p\) e \(q\). Afirmo que, haja ou não a relação a que ele se refere, ela será, em todo o caso, uma relação da qual a matemática não necessita, e, portanto, uma relação que, por uma questão geral de economia, não deve ser admitida no nosso arsenal de noções fundamentais; que, seja qual for a relação de «derivabilidade formal» entre duas proposições, o que importa é podermos ver que ou a primeira é falsa ou a segunda é verdadeira, e que nada além deste facto é necessário admitir nas nossas premissas; e que, finalmente, as razões de pormenor que o Professor Lewis alega contra o ponto de vista que advogo podem ser todas rebatidas em pormenor e dependem, para serem plausíveis, de uma suposição dissimulada e inconsciente do ponto de vista que rejeito. Concluo, portanto, não haver necessidade alguma de admitir como noção fundamental qualquer forma de implicação não exprimível como uma função de verdade.
Funções proposicionais

Quando, no capítulo precedente, discutimos as proposições, não tentámos dar uma definição da palavra «proposição». Mas, embora a palavra não possa ser formalmente definida, é necessário dizer algo quanto ao seu significado, para evitar a confusão muito comum com «funções proposicionais», que serão o assunto deste capítulo.

Por «proposição» queremos dizer primordialmente uma expressão com palavras que exprime algo que é verdadeiro ou falso. Digo «primordialmente», porque não desej o excluir outros símbolos que não os verbais, ou até meros pensamentos, se eles tiverem caráter simbólico. Mas penso que a palavra «proposição» deve ser limitada ao que pode, em algum sentido, ser chamado «símbolo», e, mais ainda, aos símbolos que dêem expressão à verdade ou à falsidade. Assim, «dois e dois são quatro» e «dois e dois são cinco» serão proposições, e o mesmo se dá com relação a «Sócrates é um homem» e «Sócrates não é um homem». A asserção: «Sejam quais forem os números a e b, \((a + b)^2 = a^2 + 2ab + b^2\)» é uma proposição; mas a fórmula \((a + b)^2 = a^2 + 2ab + b^2 \) por si só não o é, porque não afirma coisa alguma definida, a menos que nos seja dito, ou sejamos levados a supor, que a e b poderão ter todos os valores possíveis ou deverão ter estes ou aqueles valores. A primeira destas duas condições está, via de regra, tacitamente pressuposta na enunciação das fórmulas matemáticas, as quais se tornam, assim, proposições; mas se não fosse esta suposição, elas seriam «funções proposicionais». Uma «função proposicional» é, na verdade, uma expressão que contém uma ou mais componentes indeterminadas, de tal modo que, quando lhes são atribuídos valores, a expressão converte-se numa proposição. Por outras palavras, ela é uma função cujos valores são proposições.

Mas esta última definição tem de ser usada com cautela. Uma função descritiva, por exemplo, «a mais difícil proposição no tratado matemático de A» não será uma função proposicional, embora os seus valores sejam proposições. Mas em tal caso as proposições são apenas
descritas: numa função proposicional, os valores devem realmente enunciar proposições.

É fácil dar exemplos de funções proposicionais: «x é humano» é uma função proposicional; enquanto x permanecer indeterminado, não será nem verdadeira nem falsa, mas quando um valor é atribuído a x, ela torna-se uma proposição verdadeira ou falsa. Qualquer equação matemática é uma função proposicional. Enquanto as variáveis não tiverem valor definido algum, a equação será meramente uma expressão a aguardar determinação a fim de se tornar uma proposição verdadeira ou falsa. Se for uma equação que contenha uma variável, tornar-se-á verdadeira quando a variável tomar um valor igual a uma raiz da equação, e no caso contrário torna-se falsa; mas se for uma «identidade», será verdadeira qualquer que seja o valor numérico que a variável tome. A equação de uma curva no plano ou de uma superfície no espaço é uma função proposicional, verdadeira para valores das coordenadas dos pontos da curva ou da superfície, falsa para outros valores. Expressões da lógica tradicional, tais como «todo A é B», são funções proposicionais: A e B têm de ser determinados como classes particulares para que tais expressões sejam verdadeiras ou falsas.

A noção de «casos» ou «particularizações» [ou «determinações»] depende das funções proposicionais. Considere-se, por exemplo, o tipo de processo sugerido pelo que é chamado «generalização» e vejamos um exemplo muito primitivo, digamos, «os relâmpagos são seguidos de trovões». Temos vários «casos» disto, isto é, várias proposições como: «isto é um lampejo de relâmpago e é seguido de trovão». Estas ocorrências são «particularizações» de quê? São casos ou particularizações da função proposicional: «Se x é um lampejo de relâmpago, x é seguido de trovão». O processo de generalização (em cuja validade felizmente não estamos interessados) consiste em passar de um número de tais casos para a validade universal da função proposicional: «Se x é um lampejo de relâmpago, x é seguido de

\[127\] [Por exemplo, a equação \(x^2 - 4x + 4 = 0 \) torna-se na proposição verdadeira \(2^2 - 4 \cdot 2 + 4 = 0 \) quando \(x \) é substituído por 2, e na proposição falsa \(3^2 - 4 \cdot 3 + 4 = 0 \) quando \(x \) é substituído por 3. A identidade \((x - 2)^2 = x^2 - 4x + 4 \) torna-se numa proposição verdadeira qualquer que seja o valor numérico atribuído a \(x \).]

\[128\] [Por exemplo, a equação da circunferência unitária com centro na origem e raio 2, \(x^2 + y^2 = 4 \), é uma função proposicional que se torna na proposição verdadeira \(2^2 + 0^2 = 4 \) para \(x = 2, y = 0 \), e na proposição falsa \(2^2 + 1^2 = 4 \) para \(x = 2, y = 1 \).]
trovão». Constatar-se-á que, de maneira análoga, as funções proposicionais estão sempre presentes quando falamos de particularizações ou casos ou exemplos.

Não precisamos perguntar ou tentar responder à pergunta: «Que é uma função proposicional?» Uma função proposicional considerada isoladamente pode ser tomada como mero esquema, mero invólucro, um receptáculo vazio para o significado e não como algo já significante. Falando de modo geral, estamos interessados de duas maneiras nas funções proposicionais: primeiro, quando envolvidas nas noções de «verdadeira em todos os casos» e «verdadeira em alguns casos»; segundo, quando envolvidas na teoria das classes e relações. Protelamos a consideração do segundo destes assuntos para um capítulo posterior; do primeiro nos ocupamos agora.

Quando dizemos que algo é «sempre verdadeiro» ou «verdadeiro em alguns casos», é claro que o «algo» envolvido não pode ser uma proposição. Uma proposição é apenas verdadeira ou falsa, e está tudo dito. Não há casos ou exemplos de «Sócrates é um homem» ou de «Napoleão morreu em Santa Helena». Trata-se de proposições e seria destituído de sentido falar-se em serem verdadeiras «em todos os casos». Esta expressão só é aplicável às funções proposicionais. Tome-se, por exemplo, o tipo de coisa que se diz com frequência quando se está a discutir a causalidade. (Não estamos interessados na verdade ou falsidade do que é dito, mas apenas na sua análise lógica).

Dizem-nos que A é, em todos os casos, seguido de B. Mas, se há «casos» de A, é porque A deve ser algum conceito geral do qual é significativo dizer «x₁ é A», «x₂ é A», «x₃ é A» e assim por diante, onde x₁, x₂, x₃ são particulares que não são idênticos entre si. Isto aplica-se, por exemplo, ao nosso caso anterior do relâmpago. Dizemos que o relâmpago (A) é seguido do trovão (B). Mas os lampejos separados são particulares, não idênticos, mas compartilhando a propriedade comum de ser relâmpago. A única maneira de exprimir uma propriedade comum em geral é dizer que uma propriedade comum de vários objectos é uma função proposicional que se torna verdadeira quando qualquer desses objectos é tomado para valor da variável. Neste caso, todos os objectos são «casos» [particulares] da verdade da função proposicional — porque uma função proposicional, embora não possa ser verdadeira ou falsa por si mesma, é verdadeira em certos casos e falsa em certos outros, a menos que seja «sempre verdadeira» ou «sempre falsa». Quando, regressando ao nosso exemplo, dizemos que A é em todos os casos seguido de B, queremos dizer que, seja x o que for, se x for um A, ele é seguido de um B; isto
é, estamos a afirmar que uma certa função proposicional é «sempre verdadeira».

As frases que contêm palavras como «todos», «todas», «todo», «toda», «o», «a», «alguns», «algumas» exigem uma função proposicional para a sua interpretação. A maneira pela qual as funções proposicionais ocorrem pode ser explicada por meio de duas das palavras acima, a saber: «todo» (ou «toda») e «algum» (ou «alguma»).

Há, em última análise, apenas duas coisas que podem ser feitas com uma função proposicional: uma é afirmar que ela é verdadeira em todos os casos; outra é afirmar que ela é verdadeira em pelo menos um caso, ou em alguns casos (como diremos, assumindo que isto não implicará necessariamente uma pluralidade de casos). Todos os outros usos das funções proposicionais podem ser reduzidos a estes dois. Quando dizemos que uma função proposicional é verdadeira «em todos os casos», ou «sempre» (como também diremos, sem qualquer sugestão temporal), queremos dizer que todos os seus valores são verdadeiros. Se «\(\phi(x) \)» é a função proposicional, e \(a \) é o tipo certo de objecto para ser um argumento para «\(\phi(x) \)», então \(\phi a \) será verdadeira, seja qual for a escolha de \(a \). Por exemplo, «se \(a \) é humano, \(a \) é mortal» é verdadeiro quer \(a \) seja humano ou não; na verdade, toda a proposição desta forma é verdadeira. Assim, a função proposicional «se \(x \) é humano, \(x \) é mortal» é «sempre verdadeira» ou «verdadeira em todos os casos». Ou, ainda, a asserção «não há unicórnios» é a mesma que a asserção «a função proposicional “\(x \) não é um unicórnio”, é verdadeira em todos os casos». As assertos do capítulo anterior sobre proposições, por exemplo, «“\(p \) ou \(q \)” implica “\(q \) ou \(p \)”», são na realidade assertos de que certas funções proposicionais são verdadeiras em todos os casos. Não afirmamos, por exemplo, que o princípio acima seja verdadeiro somente para este ou aquele \(p \) ou \(q \) particulares, mas que são verdadeiros para qualquer \(p \) ou \(q \) a respeito do qual possa ser significativamente definido. A condição de que uma função proposicional deva ser significa a para um determinado argumento é a mesma que a condição de que ela deva ter um valor lógico para aquele argumento, seja ele a verdade ou a falsidade. O estudo das

129 Sobretudo na época pós-Tarski (a partir dos anos 30 do séc. XX) os lógicos cuidam normalmente de distinguir claramente a sintaxe da semântica de uma linguagem formal, e a linguagem da sua metalinguagem. As proposições e funções proposicionais de uma linguagem formal não devem mencionar noções semânticas (verdade, falsidade) nem outras noções metalinguísticas relativas a essa mesma linguagem.]
Introdução à Filosofia Matemática

condições de significação pertence à doutrina dos tipos lógicos, que não desenvolvemos para além do esboço dado no capítulo precedente.

Não apenas os princípios de dedução, mas todas as proposições primitivas da lógica, consistem de asserções de que certas funções proposicionais são sempre verdadeiras. Se tal não fosse o caso, elas teriam de mencionar coisas ou conceitos particulares — Sócrates, ou vermelhidão, ou Este e Oeste, ou seja lá o que for —, e é claro que não é do domínio da lógica fazer asserções que são verdadeiras relativamente a uma tal coisa ou conceito mas não relativamente a outra. É parte da definição de lógica (mas não a sua definição completa) que todas as suas proposições sejam completamente gerais, isto é, todas consistem na asserção de que algumas funções proposicionais que não contêm termos constantes são sempre verdadeiras. Voltaremos, no capítulo final, à discussão das funções proposicionais que não contêm termos constantes. De momento, passaremos a outra coisa a ser feita com uma função proposicional, a saber, a asserção de que ela é «algumas vezes verdadeira», isto é, verdadeira em pelo menos um caso.

Quando dizemos «há homens», isto significa que a função proposicional «\(x \) é um homem» é algumas vezes verdadeira. Quando dizemos «alguns homens são gregos», isto significa que a função proposicional «\(x \) é um homem e um grego» é algumas vezes verdadeira. Quando dizemos «os canibais ainda existem em África» é algumas vezes verdadeira, isto quer dizer que a função proposicional «\(x \) é um canibal agora em África» é verdadeira para alguns valores de \(x \). Dizer «há pelo menos \(n \) indivíduos no universo» é dizer que a função proposicional «\(\alpha \) é uma classe de indivíduos e um membro do número cardinal \(n \)» é algumas vezes verdadeira, ou, como podemos dizer, é verdadeira para certos valores de \(\alpha \). Esta forma de expressão é mais conveniente quando se torna necessário indicar qual a componente variável que estamos tomando para argumento na nossa função proposicional. Por exemplo, a função proposicional acima, que podemos abreviar para «\(\alpha \) é uma classe de \(n \) indivíduos», contém duas variáveis, \(\alpha \) e \(n \). O axioma do infinito, na linguagem das funções proposicionais, é: «A função proposicional “se \(n \) é um número indutivo, é verdade, para alguns valores de \(\alpha \), que \(\alpha \) é uma classe de \(n \) indivíduos” é verdadeira para todos os valores possíveis de \(n \). Há aqui uma função proposicional subordinada, «\(\alpha \) é uma classe de \(n \) indivíduos», que se diz ser, com respeito a \(\alpha \), algumas vezes verdadeira; e a asserção de que isto acontece se \(n \) é um número indutivo, é afirmada, com respeito a \(n \), sempre verdadeira.
A asserção de que uma função proposicional ϕx é sempre verdadeira é a negação da asserção de que não-ϕx é algumas vezes verdadeira, e a asserção de que ϕx é algumas vezes verdadeira é a negação da asserção de que não-ϕx é sempre verdadeira. Assim, a asserção de que «todos os homens são mortais» é a negação da asserção de que a função proposicional «x é um homem imortal» é algumas vezes verdadeira. E a asserção de que «existem unicórnios» é a negação da asserção de que a função proposicional «x não é um unicórnio» é sempre verdadeira.130 Dizemos que ϕx é «nunca verdadeira» ou «sempre falsa» se não-ϕx é sempre verdadeira. Pode-mos, se quisermos, tomar uma das componentes do par «sempre», «algumas vezes» como noção primitiva, definindo a outra por meio da negação. Assim, se escolhermos «algumas vezes» como noção primitiva, poderemos definir: «ϕx é sempre verdadeira” significa “é falso que não-ϕx é algumas vezes verdadeira”.131 Mas, por razões ligadas à teoria dos tipos, parece mais correcto tomar ambas as componentes, «sempre» e «algumas vezes», como noções primitivas, e definir com o seu auxílio a negação de proposições em que ocorrem. Quer dizer, admitindo já termos definido (ou adoptado como noção primitiva) a negação das proposições do tipo a que x pertence, definimos: «A negação de “ϕx sempre” é “não-ϕx algumas vezes”; e a negação de “ϕx algumas vezes” é “não-ϕx sempre”». De igual modo podemos redefinir a disjunção e as outras funções de verdade, quando aplicadas a proposições que contenham variáveis aparentes, em termos das definições e noções primitivas para proposições que não contenham variável aparente alguma. As proposições que não contêm variáveis aparentes são chamadas «proposições elementares». Destas, podemos ascender, passo a passo, usando os métodos há pouco indicados, até à teoria das funções de verdade quando aplicadas a uma, duas, três... variáveis, ou a qualquer número delas até n, sendo n qualquer número finito indicado.

As formas consideradas as mais simples na lógica formal tradicional estão longe de o ser, pois envolvem, todas elas, a asserção de todos ou de alguns valores de uma função proposicional composta. Tomemos, para começar, «todo S é P». Admitiremos que S é definido por uma função proposicional ϕx, e P por uma função proposicional ψx. Por exemplo, se S é homens, ϕx será «x é humano»; se P é mortais,

131 Por razões linguísticas, é muitas vezes conveniente, para evitar sugerir o plural ou o singular, dizer «ϕx nem sempre é falsa» em vez de «ϕx algumas vezes» ou «ϕx é algumas vezes verdadeira».
ψx será «há um instante de tempo no qual x morre». Então, «todo S é P» significa: «"ϕx implica ψx" é sempre verdadeira». Cabe observar que «todo S é P» não se aplica apenas aos termos que são realmente S; diz igualmente algo sobre os termos que não são S. Suponhamos deparar com um x que não sabemos se é ou não um S; ainda assim, a asserção «todo S é P» diz-nos algo sobre x, a saber, que se x é um S, então x é um P. E isto é tão verdade quando x não é um S como quando x é um S. Se não fosse igualmente verdadeiro em ambos os casos, o método da reductio ad absurdum não seria válido; pois a essência deste método consiste em usar implicações em casos nos quais (como por vezes só posteriormente se constata) o antecedente é falso.132 Podemos reformular isto de outra maneira. Para entendermos «todo S é P» não é necessário sermos capazes de enumerar os termos que são S; desde que saibamos o que significa ser S e ser P, podemos compreender completamente o que é realmente afirmado por «todo S é P», por pouco que saibamos sobre os casos particulares de cada. Isto mostra não ser realmente os termos que são S que é relevante na asserção «todo S é P», mas todos os termos a respeito dos quais seja significativa a suposição de que eles sejam S, isto é, todos os termos que são S, juntamente com todos os termos que não são S — isto é, todos os do «tipo» lógico apropriado. O que se aplica a asserções sobre todos aplica-se também a asserções sobre alguns. «Há homens, por exemplo, significa que «x é humano» é verdadeira para alguns valores de x. Aqui, todos os valores de x (isto é, todos os valores para os quais «x é humano» seja significativa, verdadeira ou falsa) são relevantes, e não apenas aqueles que de facto são humanos. (Isto torna-se óbvio se considerarmos como poderíamos provar que tal asserção é falsa). Toda a asserção sobre «todos» ou «alguns» envolve, assim, não apenas os argumentos que tornam uma certa função proposicional verdadeira, mas também todos os que a tornam significativa, isto é, para os quais ela tenha algum valor lógico, seja ele verdadeiro ou falso.

Podemos agora prosseguir na nossa interpretação das formas tradicionais da lógica formal antiga. Admitimos que S é os termos x para os quais ϕx é verdadeira, e P aqueles para os quais ψx é verdadeira. (Como veremos em capítulo posterior, todas as classes são derivadas desta maneira a partir de funções proposicionais). Então:

«Todo S é P» significa «"ϕx implica ψx" é sempre verdadeira».

132 [Numa condicional ou implicação «Se p, então q» (em símbolos: «p→q»), p é o antecedente e q o consequente, mas em alguns textos mais antigos, p era chamada a hipótese e q a tese.]
XV. Funções proposicionais

«Alguns S é P» significa «“φx e ψx” é algumas vezes verdadeira».
«Nenhum S é P» significa «“φx implica não-ψx” é sempre verdadeira».
«Alguns S não é P» significa «“φx e não-ψx” é algumas vezes verdadeira».

Cabe observar que as funções proposicionais aqui afirmadas para todos ou alguns valores não são as próprias φx e ψx, mas as funções de verdade de φx e ψx para o mesmo argumento x. A melhor maneira de conceber o tipo de coisa que se pretende não é começar de φx e ψx em geral, mas de φα e ψα, em que α é alguma constante. Suponha-se que estamos a considerar todas as [particulares de] «os homens são mortais»: começaremos com

«Se Sócrates é humano, Sócrates é mortal»,
e depois consideraremos «Sócrates» substituído por uma variável x sempre que «Sócrates» ocorra. O objectivo a garantir é que, embora x permaneça uma variável, sem qualquer valor definido, ela tenha o mesmo valor em «φx» como em «ψx» quando estivermos a afirmar que «φx implica ψx» é sempre verdadeira. Isto exige que comeцemos com uma função proposicional cujos valores sejam como «φa implica ψa» e não com duas funções separadas φx e ψx: pois, se começarmos com duas funções separadas, nunca poderemos assegurar que o x, embora permanecendo indeterminado, venha a ter o mesmo valor em ambas.

Para abreviar, dizemos «φx implica sempre ψx» quando queremos dizer que «φx implica ψx» é sempre verdadeira. As proposições da forma «φx implica sempre ψx» são chamadas «implicações formais»; esta designação é igualmente empregue quando haja diversas variáveis.\(^{133}\)

As definições acima mostram como estão distanciadas das formas mais simples as proposições como «todo S é P», com as quais começa a lógica tradicional. É típico da carência de análise que a lógica tradicional trate «todo S é P» como uma proposição da mesma forma que «x é P» — por exemplo, trata «todos os homens são mortais» como sendo da mesma forma que «Sócrates é mortal». Como acabamos de ver, a primeira é da forma «φx implica sempre ψx», enquanto a segunda é da forma «ψx». A enfática separação destas

\(^{133}\) [É claro que usando o símbolo de quantificação universal «∀», bastaria afirmar que «∀x(φx → ψx)» é verdadeira. Na época em que o livro foi escrito também era comum a notação «φx ⊃, ψx» para a implicação formal.]
Introdução à Filosofia Matemática

duas formas, realizada por Peano e Frege, constituiu um avanço bastante vital na lógica simbólica.

Ver-se-á que «todo S é P» e «nenhum S é P» não diferem realmente na forma, excepto pela substituição de ψx por não-ψx, e que o mesmo se aplica a «algum S é P» e «algum S não é P». Cabe também observar que as regras tradicionais de conversão são deficientes, se adoptarmos o único ponto de vista tecnicamente aceitável de que proposições como «todo S é P» não envolvem a «existência» dos S, isto é, não exigem a existência de termos que sejam S. As definições acima conduzem ao resultado de que, se ϕx é sempre falsa, isto é, se não há S algum, então «todo S é P» e «nenhum S é P» serão, ambas, verdadeiras, seja qual for P. Pois, de acordo com a definição apresentada no último capítulo, «ϕx implica ψx» significa «não-ϕx ou ψx», o que é sempre verdadeiro se não-ϕx for sempre verdadeira. Esse resultado poderá, num primeiro momento, levar o leitor a desejar definições diferentes, mas um pouco de experiência prática mostra logo que quaisquer definições diferentes seriam inconvenientes e ocultariam as ideias importantes. A proposição «ϕx implica sempre ψx e ϕx é algumas vezes verdadeira» é essencialmente composta e seria muito estranho apresentá-la como a definição de «todo S é P», porque então não sobraria linguagem alguma para «ϕx implica sempre ψx», que é cem vezes mais necessária do que a outra. Mas, com as nossas definições, «todo S é P» não implica «algum S é P», porquanto a primeira permite a não existência dos S e a segunda não o permite; assim, torna-se inválida a conversão per accidens e alguns modos do silogismo são falaciosos, por exemplo, Darapti: «Todo M é S; todo M é P; portanto algum S é P», que falha se não houver M algum.

A noção de «existência» tem várias formas, uma das quais nos ocupará no próximo capítulo; mas a forma fundamental é a deduzida imediatamente da noção de «algumas vezes verdadeira». Dizemos que um argumento a «satisfaz» uma função proposicional ϕx se ϕa é verdadeira; isto tem o mesmo sentido com que se diz que as raízes de uma equação satisfazem a equação. Ora, se ϕx é algumas vezes verdadeira, podemos dizer que há valores x para os quais é verdadeira,

\[134\] [Este é, como se sabe, um importante desvio da lógica moderna relativamente ao que Aristóteles admitia como valor lógico de «todo S é P» no caso de não existir nenhum S. Segundo a concepção aristotélica, «as galinhas com dentes voam» é falsa, mas para nós é obviamente verdadeira (pois a sua falsidade implicaria a existência de pelo menos uma galinha com dentes que não voasse, coisa que manifestamente não é deste reino).]
ou podemos dizer que «existem argumentos que satisfazem \(\phi x \)». Este é o significado fundamental da palavra «existência». Outros significados ou são derivados deste ou representam meras confusões mentais. Podemos dizer correctamente «existem homens», com o significado de que «\(\exists x \text{ é um homem} \)» é algumas vezes verdadeira. Mas se efectuarmos o pseudo-sílogismo: «Os homens existem, Sócrates é um homem, logo Sócrates existe», estaremos a falar sem sentido, pois «Sócrates» não é, como «homens», um mero argumento indeterminado para uma função proposicional dada. A falácia é sensivelmente análoga à do argumento: «Os homens são numerosos, Sócrates é um homem, portanto Sócrates é numeroso». Neste caso, é claro que a conclusão não tem sentido, mas, no caso da existência, isso não é óbvio, por motivos que surgirão mais plenamente no próximo capítulo. De momento, observemos apenas o facto de que, embora seja correcto dizer «os homens existem», é incorrecto, ou antes destituído de sentido, atribuir-se existência a um determinado particular \(x \) que por acaso é um homem. De um modo geral, «existem termos que satisfazem \(\phi x \)» significa «\(\phi x \) é algumas vezes verdadeira»; mas «\(a \text{ existe} \)» (em que \(a \) é um termo que satisfaz \(\phi x \)) é mero ruído ou forma, carente de significado. Tendo em mente esta simples falácia, constatar-se-á que podemos resolver muitos problemas filosóficos antigos relativos ao significado da existência.

Outro conjunto de noções sobre as quais a filosofia se permitiu cair em desesperadas confusões ao não separar suficientemente as proposições das funções proposicionais, é o das noções de «modalidade»: necessário, possível e impossível. (Em vez de possível diz-se, por vezes, contingente ou afirmativo). Era tradicional o ponto de vista de que, entre as proposições verdadeiras, algumas eram necessárias, enquanto outras eram meramente contingentes ou afirmativas; entre as proposições falsas, algumas eram impossíveis, a saber, aquelas cujas contraditórias eram necessárias, enquanto outras apenas acontecia não serem verdadeiras. Na verdade, porém, não havia nunca uma apreciação clara do que era acrescentado à verdade pelo conceito de necessidade. No caso das funções proposicionais, a divisão tríplice é óbvia. Se \(\phi x \) é um valor indeterminado de uma certa função proposicional, será necessário se a função proposicional for sempre verdadeira, possível se for algumas vezes verdadeira, e impossível se não for nunca verdadeira. Este tipo de situação surge em relação às probabilidades, por exemplo. Suponha-se que é tirada uma bola \(x \) de um saco onde estão várias bolas: se todas as bolas forem brancas, «\(x \) será branca» é necessário; se algumas forem brancas, será possível; se nenhuma for branca, será impossível. Aqui, tudo o que é conhecido
sobre x é que satisfaz uma certa função proposicional, a saber, «x é uma bola que estava dentro do saco». Trata-se de situação que é geral em problemas de probabilidades e não é invulgar na vida prática — por exemplo, quando bate à porta uma pessoa da qual nada sabemos, excepto que traz consigo uma carta de apresentação do nosso amigo Fulano de Tal. Em todos estes casos, e no tocante às modalidades em geral, a função proposicional é relevante. Para raciocinar claro em situações muito diversas, o hábito de manter as funções proposicionais claramente separadas das proposições é da mais alta importância, e a sua não observância no passado foi uma desgraça para a filosofia.
CAPÍTULO XVI

Descrições

Lidámos, no capítulo precedente, com as palavras *todo(a)* e *algum(a)*; neste capítulo, consideraremos os artigos definidos *o, a* no singular e, no capítulo seguinte, consideraremos estes dois artigos no plural. Poderá parecer excessivo dedicar dois capítulos a dois artigos definidos, mas, para o matemático filosofante, são palavras de muito grande importância: como o gramático de Browning[135] com o enclítico *êle*, daria a doutrina desta palavra se estivesse «morto da cintura para baixo» e não meramente numa prisão.[136]

Já tivemos ocasião de mencionar as «funções descritivas», isto é, expressões como «o pai de *x*» ou «o seno de *x*». Estas expressões serão definidas depois das «descrições».

«Com quem te encontraste?» «Encontrei-me com um homem». «Essa é uma descrição muito indefinida». Não estamos, portanto, a afastar-nos do uso corrente na nossa terminologia. A questão é: Que afirmo realmente quando assevero «Encontrei-me com um homem? Admitamos, no momento, que a minha asserção é verdadeira e que de facto me encontrei com Joel. É claro que o que afirmo é «Encontrei-me com Joel». Posso dizer «Encontrei-me com um homem, mas não era Joel»; neste caso, embora esteja a mentir, não me contradigo, como faria se quando dissesse que me encontrei com um homem

135 [Na colectânea *Men and Women*, o poeta e dramaturgo inglês Robert Browning (1812-1889) proporciona-nos cinquenta dos seus mais belos poemas, entre os quais “The Grammarian Funeral”, a cujo personagem se refere Lorde Russell.]

136 [Em 1916 Bertrand Russell foi expulso do Trinity College de Cambridge e condenado a pagar uma multa por actividades contra a guerra. Dois anos mais tarde voltou a ser condenado pelas mesmas razões, desta vez com direito a prisão durante seis meses. Foi neste período que redigiu este livro.]
quisesse dizer realmente que me encontrei com Joel. É claro também que a pessoa com quem falo pode entender o que digo, mesmo que seja estrangeiro e nunca tenha ouvido falar de Joel.

Mas podemos ir mais além: não apenas Joel, mas nenhum outro homem real entra na minha asserção. Isto torna-se óbvio quando a asserção é falsa, porquanto não há, então, razão alguma para que Joel, e não outra pessoa qualquer, entre na proposição. Na verdade, a asserção continuaria significante, embora não pudesse ser, possivelmente, verdadeira, mesmo que não existisse homem algum. «Encontrei-me com um unicórnio» ou «encontrei-me com uma serpente marinha» são asserções perfeitamente significantes, se sabemos o que seria um unicórnio ou uma serpente marinha, isto é, quais as definições destes monstros fabulosos. Assim, é somente aquilo a que podemos chamar o conceito que entra na proposição. No caso do «unicórnio», por exemplo, há apenas o conceito: não há, também, em algum lugar escondido nas sombras, algo irreal que possa ser chamado «um unicórnio». Portanto, como é significante (embora falso) dizer «encontrei-me com um unicórnio», é claro que esta proposição, correctamente analisada, não contém a componente «um unicórnio», embora contenha o conceito «unicórnio».

A questão da «irrealidade», com que deparamos neste ponto, é muito importante. Enganosamente levados pela gramática, a grande maioria dos lógicos que lidaram com esta questão cuidou dela segundo linhas erradas. Consideraram a forma gramatical um guia mais seguro na análise do que de facto é. E não souberam quais diferenças na forma gramatical são importantes. «Encontrei-me com Joel» e «encontrei-me com um homem» seriam tradicionalmente consideradas proposições da mesma forma, mas, na realidade, são de formas muito diferentes: a primeira cita uma pessoa real, Joel, enquanto a segunda envolve uma função proposicional, tornando-se, quando explícita: «A função proposicional “encontrei-me com x e x humano” é algumas vezes verdadeira». (Cabe lembrar que adoptámos a convenção de usar «algumas vezes» sem que isto implique mais de uma vez). Esta proposição não é, obviamente, da forma «encontrei-me com x», que justifica a existência da proposição «encontrei-me com um unicórnio» a despeito do facto de não existir uma coisa como «um unicórnio».

Na falta do aparato das funções proposicionais, muitos lógicos foram levados à conclusão de que existem objectos irreais. É alegado,
nomeadamente, por Meinong, que podemos falar da "montanha de ouro", do "quadrado redondo" e assim por diante; podemos formar proposições verdadeiras das quais estas coisas são os objectos referentes; portanto, elas devem ser algum tipo de ser lógico, pois, de outro modo, as proposições em que ocorrem não teriam sentido. Parece-me que em tais teorias há uma falha daquele sentido da realidade que deve ser preservado até mesmo nos estudos mais abstractos. Afirmo que a lógica não deve admitir um unicórnio mais do que é admitido pela zoologia; porque a lógica está tão interessada no mundo real quanto a zoologia, embora com as suas peculiaridades mais abstractas e gerais. Dizer que os unicórnios têm existência na heráldica ou na literatura ou na imaginação é a mais lamentável e mesquinha das evasões. O que existe na heráldica não é um animal, feito de carne e osso, movendo-se e respirando por sua própria iniciativa. O que existe é uma figura ou uma descrição em palavras. Da mesma forma, dizer que Hamlet, por exemplo, existe no seu mundo próprio, a saber, no mundo da imaginação de Shakespeare, com a mesma verdade com que se diz (digamos) que Napoleão existiu no mundo real é dizer algo deliberadamente destinado a confundir, ou, então, confuso em si num grau dificilmente acreditável. Só existe um mundo, o mundo "real": a imaginação de Shakespeare é parte dele e os pensamentos que ele teve ao escrever Hamlet são reais. Também o são os pensamentos que temos ao ler a peça teatral. Mas é da própria essência da ficção o facto de apenas os pensamentos, sentimentos, etc. em Shakespeare e nos seus leitores serem reais e de não haver, para além deles, um Hamlet objectivo. Ao darmos conta das reacções provocadas por Napoleão nos escritores e leitores da história, não teremos tocado o homem real; mas no caso de Hamlet, teremos tocado no seu âmago. Se ninguém tivesse pensado em Hamlet, nada restaria dele; se ninguém tivesse pensado em Napoleão, este apressar-se-ia a

providenciar para que alguém o fizesse. O sentido da realidade é vital em lógica, e, se alguém brincar com ele epretender que Hamlet possui um outro tipo de realidade, estará a prestar um mau serviço ao pensamento. Um robusto sentido da realidade é bastante necessário ao enquadramento de uma análise correcta das proposições sobre unicórnios, montanhas de ouro, quadrados redondos e outros pseudo-objetos do género.

Em obediência ao sentido da realidade, insistiremos em que, na análise das proposições, nada de «irreal» seja admitido. Mas, afinal de contas, — poder-se-á perguntar —, se nada existe de irreal, como é que poderíamos admitir algo irreal? A resposta é que, se atribuimos significação a grupos de símbolos que não têm significado algum, cairemos no erro de admitir irrealidades, na única maneira em que isto é possível, a saber, como objectos descritos. Na proposição «encontrei-me com um unicórnio», as quatro palavras em conjunto formam uma proposição significante, e a palavra «unicórnio» é, em si, significante, no mesmo sentido em que o é a palavra «homem». Mas as duas palavras «um unicórnio» não formam um grupo subordinado com um significado próprio. Assim, se atribuimos, falsamente, um significado a estas duas palavras, surpreendemo-nos a cavalgar «um unicórnio» e com o problema de determinar como pode acontecer tal coisa num mundo onde não há unicórnios. A expressão «um unicórnio» é uma descrição indefinida que descreve algo irreal. Uma proposição como «x é irreal» só tem significado quando «x» é uma descrição, definida ou indefinida; neste caso, a proposição será verdadeira se «x» for uma descrição que nada descreva. Mas, a descrever ou não alguma coisa, a descrição «x» não é, em caso algum, uma constituinte da proposição em que ocorre; como «um unicórnio», não é um grupo subordinado que tenha significado próprio. Tudo isto resulta do facto de que, quando «x» é uma descrição, «x é irreal» ou «x não existe» não é um contra-senso, mas é sempre significante, e, por vezes, verdadeiro.

Podemos passar, agora, a definir, de modo geral, o significado de proposições que contêm descrições ambíguas. Suponha-se que deseja-mos fazer alguma asserção sobre «um tal-e-tal», em que «tal-e-tal» são os objectos que têm uma certa propriedade φ, isto é, os objectos x para os quais a função proposicional φx é verdadeira. (Por exemplo, se tomarmos «um homem» para nosso exemplo de «um tal-e-tal», φx será «x é humano»). Queremos agora enunciar a propriedade ψ de «um tal-e-tal», isto é, queremos afirmar que «um tal-e-tal» tem aquela mesma propriedade que tem x quando ψx é verdadeira. (Por exemplo, no caso de «encontrei-me com um homem», ψx será «encontrei-me com x»). Mas a proposição de que «um tal-e-tal» tem a propriedade ψ
não é uma proposição da forma \(\psi x \). Se o fosse, «um tal-e-tal» teria
de ser idêntico a \(x \) para um \(x \) apropriado; e, embora (em certo sentido)
isto possa verificar-se em alguns casos, certamente não o é no caso de
«um unicórnio». É justamente este facto, o de a asserção de que um
«tal-e-tal» tem a propriedade \(\psi \) não ser da forma \(\psi x \), que possibilita a
«um tal-e-tal» ser, num certo sentido claramente definido, «irreal».
A definição é como segue:

A asserção de que «um objecto com a propriedade \(\phi \) tem a
propriedade \(\psi \)» significa:

«A asserção conjunta de \(\phi x \) e \(\psi x \) não é sempre falsa».

No que toca a lógica, trata-se da mesma proposição que pode ser
expressa por «alguns \(\phi \) são \(\psi \)»; mas retoricamente há uma diferença:
num dos casos há uma sugestão de singularidade, enquanto no outro
há a de pluralidade. Mas isto não é, todavia, o ponto importante.
O ponto importante é que, quando analisadas correctamente, constata-
-se que as proposições verbalmente acerca de «um tal-e-tal» não
contém componente alguma representada por esta expressão. É por
isso que tais proposições podem ser significantes até mesmo quando
não existem tais coisas tal-e-tal.

A definição de existência, aplicada a descrições ambíguas, resulta
do que foi dito no fim do capítulo precedente. Dizemos que os
«homens existem» ou que «um homem existe» se a função proposi-
cional «\(x \) é humano» é algumas vezes verdadeira; e, de modo geral,
«um tal-e-tal» existe se \(\phi x \) é tal-e-tal» é algumas vezes verdadeira.
A proposição «Sócrates é um homem» é, sem dúvida alguma, equiva-
-lente a «Sócrates é humano», mas não é exactamente a mesma propo-
sição. O \(\phi \) de «Sócrates é humano» exprime a relação entre sujeito e
predicado; o \(\phi \) de «Sócrates é um homem» exprime identidade. É uma
desgraça para a raça humana o facto de ela ter escolhido empregar a
mesma palavra \(\phi \) para exprimir estas duas ideias inteiramente
diferentes — uma desgraça que a linguagem lógica simbólica natural-
mente remedeia. A identidade em «Sócrates é um homem» é identida-
de entre um objecto nomeado (aceitando «Sócrates» como um nome,
sujeito a condições a explicitar mais adiante) e um objecto descrito
ambiguamente. Um objecto descrito ambiguamente «existirá» quando
pelo menos uma proposição como esta é verdadeira, isto é, quando há
pelo menos uma proposição verdadeira da forma \(\phi x \) é um tal-e-tal»,
em que \(\phi x \) é um nome. É característico das descrições ambíguas (em
contraste com as definidas) o facto de poder haver um número
arbitrário de proposições da forma acima — Sócrates é um homem,
Platão é um homem etc. Assim, «um homem existe» segue-se de
Introdução à Filosofia Matemática

Sócrates, Platão ou qualquer outra pessoa. No caso das descrições definidas, por outro lado, a forma correspondente da proposição, a saber, «x é o tal-e-tal» (em que «xx» é um nome) só pode ser verdadeira para no máximo um valor de x. Isto leva-nos ao assunto das descrições definidas, que devem ser definidas de modo análogo ao usado para as descrições ambíguas, porém mais complicado.

Eis que chegámos ao assunto principal do presente capítulo, a saber, a definição do artigo «o» ou «a» (no singular). Um ponto muito importante a respeito da definição de «um tal-e-tal» aplica-se igualmente a «o tal-e-tal»; a definição procurada é uma definição de proposições nas quais esta frase ocorre [definições em contexto], e não uma definição da frase em si, isoladamente. No caso de «um tal-e-tal», isto é razoavelmente óbvio: ninguém poderia supor que «um homem» seja um objecto definido, capaz de ser definido isoladamente. Sócrates é um homem, Platão é um homem, Aristóteles é um homem, mas não podemos inferir que «um homem» signifique o mesmo que «Sócrates» significa e também o mesmo que Platão significa e também o mesmo que Aristóteles significa, porquanto estes três nomes têm significações diferentes. Não obstante, quando tivermos enumerado todos os homens do mundo, nada restará de que se possa dizer: «Este é um homem e não apenas isso, mas é o “um homem”, a entidade quintessencial que é justamente um homem indefinido sem ser quem quer que seja em particular». É claro que, seja qual for a coisa que exista, é uma coisa definida: se for um homem, será um determinado homem e nenhum outro. Portanto, não poderá haver uma entidade tal como «um homem» a encontrar no mundo, ao contrário dos homens específicos. E, consequentemente, é natural que não definamos «um homem» em si, mas apenas as proposições em que a expressão ocorra.

No caso de «o tal-e-tal» isto é igualmente verdadeiro, embora menos óbvio à primeira vista. Podemos demonstrar que este tem de ser o caso, pela consideração da diferença entre um nome e uma descrição definida. Tome-se a proposição: «Scott é o autor de Waverley». Temos aqui um nome, «Scott», e uma descrição, «o autor de Waverley», que se afirma aplicarem-se à mesma pessoa. A distinção entre um nome e todos os outros símbolos pode ser assim explicada:

Um nome é um símbolo simples cujo significado é algo que só pode ocorrer como sujeito, isto é, algo do tipo que definimos, no Cap. XIII, como um «individuo» ou um «particular». E um símbolo «simples» é todo aquele que não tem parte [própria] alguma que seja um símbolo. Assim, «Scott» é um símbolo simples, porque, embora tenha partes (a saber, letras separadas), estas partes não são símbolos. Por outro lado, «o autor de Waverley» não é um símbolo simples, porque
XVI. Descrições

as palavras separadas que compõem a frase são símbolos. Se, como pode ser o caso, o que quer que pareça ser um «indivíduo» seja, realmente, susceptível de ser mais analisado, teremos de contentar-nos com o que pode ser chamado «indivíduos relativos», que serão termos que, no contexto em questão, nunca são analisados e nunca ocorrem de qualquer outro modo que não como sujeitos. E nesse caso teremos, consequentemente, de contentar-nos com «nomes relativos». Do ponto de vista do nosso problema presente, a saber, o da definição das descrições, esse problema pode ser ignorado, quer se trate de nomes absolutos ou somente de nomes relativos, porquanto diz respeito a diferentes escalões na hierarquia dos «tipos», enquanto temos de comparar pares como «Scott» e «o autor de Waverley», que se aplicam, ambos, ao mesmo objecto, e não levantar o problema dos tipos. Podemos, portanto, de momento, tratar os nomes como capazes de ser absolutos; nada do que teremos a dizer dependerá desta suposição, mas o palavreado poderá ficar um pouco reduzido por ela.

Temos, então, duas coisas a comparar: (1) um nome, que é um símbolo simples, que designa directamente um indivíduo que é o seu significado [referente] e tem esse significado por seu próprio direito, independentemente dos significados de todas as outras palavras; (2) uma descrição, que consiste de várias palavras, cujos significados já estão fixados, e das quais resulta o que quer que seja tomado como «significado» da descrição.

Uma proposição que contenha uma descrição não é idêntica ao que aquela proposição se torna quando o nome é substituído, até mesmo se o nome designa o mesmo objecto que a descrição descreve. «Scott é o autor de Waverley» é, obviamente, uma proposição diferente de «Scott é Scott»: a primeira é um facto na história literária e a segunda é um truísmo trivial. E se colocamos qualquer outro que não Scott no lugar de «o autor de Waverley», a nossa proposição torna-se falsa, e, portanto, nunca mais será, certamente, a mesma proposição. Mas, poder-se-á dizer, a nossa proposição é essencialmente da mesma forma que (digamos) «Scott é Sir Walter», em que se diz que dois nomes se aplicam à mesma pessoa. A resposta é que, se «Scott é Sir Walter» realmente significa «a pessoa chamada “Scott” é a pessoa chamada “Sir Walter”», então os nomes estão a ser usados como descrições: isto é, o indivíduo, em vez de ser nomeado, está a ser descrito como a pessoa que tem aquele nome. Esta é a maneira pela qual que os nomes são frequentemente usados na prática, e, por regra, nada haverá na fraseologia a mostrar se estão a ser usados desta maneira ou como nomes. Quando um nome é usado directamente, meramente para indicar sobre o que estamos a falar, ele não é parte alguma do facto
afirmado, ou da falsidade, se for o caso de a nossa asserção ser falsa: é meramente parte do simbolismo pelo qual exprimimos o nosso pensamento. O que desejamos exprimir é algo que possa (por exemplo) ser traduzido para uma linguagem estrangeira; é algo para o que as palavras reais são um veículo, mas do qual elas não fazem parte. Por outro lado, quando produzimos uma proposição sobre «a pessoa chamada “Scott”», o nome real «Scott» entra no que estejamos a afirmar e não apenas na linguagem usada na asserção. A nossa proposição será agora uma proposição diferente se substituirmos «Scott» por «a pessoa chamada “Sir Walter”». Mas, enquanto usarmos os nomes como nomes, o facto de usarmos «Scott» ou dizermos «Sir Walter» é tão irrelevante para o que estamos a afirmar como seria falar inglês ou francês. Assim, enquanto os nomes forem usados como nomes, «Scott é Sir Walter» é a mesma proposição trivial que «Scott é Scott». Isto completa a prova de que «Scott é o autor de Waverley» não é a mesma proposição que resulta da substituição de «o autor de Waverley» por um nome, seja qual for o nome empregue na substituição.

Quando usamos uma variável e falamos de uma função proposicional, digamos \(\phi x \), o processo de aplicar asserções gerais acerca de \(x \) a casos particulares consistirá em substituir a letra \(\langle x \rangle \) por um nome, admitindo que \(\phi \) seja uma função proposicional que tem indivíduos para argumentos. Suponha-se, por exemplo, que \(\phi x \) é «sempre verdadeira»; admitamos ainda, digamos, que seja a «lei da identidade» \(x = x \). Então, podemos substituir \(\langle x \rangle \) por qualquer nome que escolhamos, obtendo sempre uma proposição verdadeira. Admitindo, por momentos, que «Sócrates», «Platão» e «Aristóteles» são nomes (uma suposição assaz precipitada), podemos deduzir, da lei de identidade, que Sócrates é Sócrates, Platão é Platão e Aristóteles é Aristóteles. Mas cometeremos uma falácia se tentarmos inferir, sem premissas adicionais, que o autor de Waverley é o autor de Waverley. Isto resulta do que acabamos de provar, isto é, que, se substituimos «o autor de Waverley» por um nome, numa proposição, a proposição que obtemos é diferente. Equivale a dizer, aplicando o resultado ao nosso caso presente: se \(\langle x \rangle \) é um nome, \(\langle x = x \rangle \) não é a mesma proposição que «o autor de Waverley é o autor de Waverley», seja qual for o nome \(\langle x \rangle \). Assim, não podemos deduzir, do facto de toda proposição da forma \(\langle x = x \rangle \) ser verdadeira, sem mais cerimónias, que o autor de Waverley é o autor de Waverley. Na verdade, as proposições da forma «o tal-e-tal é o tal-e-tal» não são sempre verdadeiras: é necessário que o tal-e-tal exista (termo este que será explicado dentro em pouco). É falso que o actual Rei de França seja o actual Rei de França, que o
quadrado redondo seja o quadrado redondo. Quando substituimos um nome por uma descrição, as proposições que são «sempre verdadeiras» podem tornar-se falsas se a descrição nada descrever. Não haverá mistério algum nisso, assim que nos apercebemos (o que foi provado no capítulo precedente) de que quando substituimos um nome por uma descrição o resultado não é o valor da função proposicional em questão.

Estamos agora preparados para definir as proposições nas quais ocorre uma descrição definida. A única coisa que distingue «o tal-e-tal» de «um tal-e-tal» é a implicação de unicidade. Não podemos falar de «o habitante de Londres», porque habitar Londres é um atributo que não é singular. Não podemos falar de «o actual Rei de França», porque tal coisa não existe; mas podemos falar de «o actual Rei da Inglaterra».

Assim, as proposições sobre «o tal-e-tal» implicam sempre proposições sobre «um tal-e-tal», com a adenda de que não há mais de um tal-e-tal. Uma proposição como «Scott é o autor de Waverley» não poderia ser verdadeira se Waverley nunca tivesse sido escrito, ou se várias pessoas o tivessem escrito; também não o poderia qualquer outra proposição resultante de uma função proposicional x pela substituição de «x» por «o autor de Waverley». Podemos dizer que «o autor de Waverley» significa «o valor de x para o qual “x escreveu Waverley” é verdadeira». Assim, por exemplo, a proposição «o autor de Waverley era Escocês» envolve:

1. «x escreveu Waverley» não é sempre falsa;
2. «se x e y escreveram Waverley, x e y são idênticos» é sempre verdadeira;
3. «se x escreveu Waverley, x era Escocês» é sempre verdadeira.

Estas três proposições, traduzidas para a linguagem ordinária, dizem:

1. pelo menos uma pessoa escreveu Waverley;
2. no máximo uma pessoa escreveu Waverley;
3. quem quer que tenha escrito Waverley era Escocês.

Estas três proposições estão implicitas em «o autor de Waverley era Escocês». Inversamente, as três juntas (mas não apenas duas delas) implicam que o autor de Waverley era Escocês. Portanto, as três juntas, podem ser consideradas equivalentes a: «Há um termo c tal que “x escreveu Waverley” é verdadeira quando x é c e falsa quando x não é c». Por outras palavras, «Há um termo c tal que “x escreveu Waverley” é sempre equivalente a “x é c”». (Duas proposições são

138 [Em 1919, quando este livro foi publicado pela primeira vez, o Rei de Inglaterra era Jorge V.]}
Introdução à Filosofia Matemática

«equivalentes» quando ambas são verdadeiras ou ambas são falsas). Temos aqui, para começar, duas funções de \(x \), \(\langle x \text{ escreveu Waverley} \rangle \) e \(\langle x \text{ é } c \rangle \), e formamos uma função de \(c \) ao considerar a equivalência destas duas funções de \(x \) para todos os valores de \(x \);\(^{139}\) prosseguindo, afirmamos que a função de \(c \) resultante é «algumas vezes verdadeira», isto é, que é verdadeira para pelo menos um valor de \(c \). (Obviamente não pode ser verdadeira para mais de um valor de \(c \)). Juntas, estas duas condições são definidas como fornecendo o significado de «o autor de Waverley existe».

Podemos agora definir «o termo que satisfaz a função proposicional \(\phi x \) existe». Esta é a forma geral da qual a forma acima é um caso particular. «O autor de Waverley» é «o termo que satisfaz a função proposicional “\(x \) escreveu Waverley”». E «o tal-e-tal» envolverá sempre referência a alguma função proposicional, a saber, a que define a propriedade que torna uma coisa um tal-e-tal.

A nossa definição é como segue:

«O termo que satisfaz a função proposicional \(\phi x \) existe» significa:

Há um termo \(c \) tal que \(\phi x \) é sempre equivalente a “\(x \text{ é } c \)”.

Para definir «o autor de Waverley era Escocês», temos ainda de levar em conta a terceira das nossas proposições, a saber, «Quem quer que tenha escrito Waverley era Escocês». Esta proposição será satisfeita meramente acrescentando que o \(c \) em questão tem de ser Escocês. Assim, «o autor de Waverley era Escocês» é:

Há um termo \(c \) tal que (1) “\(x \text{ escreveu Waverley} \)” é sempre equivalente a “\(x \text{ é } c \)”, (2) “\(c \text{ é Escocês} \)

E, de modo geral, «o termo que satisfaz \(\phi x \) satisfaz \(\psi x \)» é definido como significando:

Há um termo \(c \) tal que: (1) \(\phi x \) é sempre equivalente a “\(x \text{ é } c \)”, (2) \(\psi x \) é verdadeira).

Esta é a definição das proposições em que ocorrem descrições.

É possível saber muito a respeito de um termo descrito, isto é, conhecer muitas proposições relativas a «o tal-e-tal», sem que se saiba realmente o que seja o tal-e-tal, isto é, sem que se conheça qualquer proposição da forma «\(x \) é o tal-e-tal», em que «\(x \)» é um nome. Numa novela policial, as proposições sobre «quem cometeu o crime» são acumuladas, na esperança de que finalmente bastem para demonstrar

\[^{139}\] [Simbolicamente, a equivalência formal em questão é \(\forall x (\langle x \text{ escreveu Waverley} \rangle \iff \langle x \text{ é } c \rangle) \).]
que foi A que o cometeu. Podemos até ir ao ponto de dizer que, em todos os conhecimentos que podem ser expressos por palavras, — com exceção de «isto» e «aquilo» e algumas outras palavras cujo significado varia conforme as ocasiões —, nenhum nome, no sentido estrito, ocorre, mas o que parecem ser nomes constituem, na realidade, descrições. Podemos discutir significativamente sobre se Homero existiu, coisa que não poderíamos fazer se «Homero» fosse um nome. A proposição «o tal-e-tal existe» é significante, seja ela verdadeira ou falsa; mas se a é o tal-e-tal (em que «a» é um nome), as expressões «a existe» são desprovidas de significado. Só de descrições — definidas ou indefinidas — se pode afirmar significativamente a existência; porque, se «a» é um nome, tem de designar alguma coisa: o que não nomeia coisa alguma não é um nome, e, portanto, caso se proponha que seja um nome, será um símbolo vazio de significado, enquanto uma descrição, como «o actual Rei de França», não se torna incapaz de ocorrer significativamente meramente pelo facto de não descrever coisa alguma, pela razão de que se trata de um símbolo complexo. E assim, quando perguntamos se Homero existiu, estamos usando a palavra «Homero» como um símbolo abreviado: podemos substituí-lo por (digamos) «o autor da Iliada e da Odisseia». As mesmas considerações aplicam-se a quase todos os usos do que pareça ser um nome próprio.

Quando ocorrem descrições nas proposições, é necessário distinguir entre o que pode ser chamado ocorrência «primária» e ocorrência «secundária». A distinção abstracta faz-se como segue: uma descrição tem uma ocorrência «primária» quando a proposição em que ocorre resulta da substituição de «a» pela descrição em alguma função proposicional ϕx; uma descrição tem uma ocorrência «secundária» quando o resultado da substituição de «a» pela descrição em ϕx dá apenas parte da proposição considerada. Um exemplo esclarecerá o assunto. Considere-se «o actual Rei de França é calvo». Aqui, «o actual Rei de França» tem uma ocorrência primária e a proposição é falsa. Toda a proposição na qual uma descrição que nada descreve tem uma ocorrência primária é falsa. Mas considere-se agora «o actual Rei de França não é calvo». Trata-se de proposição ambígua. Se tomarmos primeiro «x é calvo» e substituirmos depois «x» por «o actual Rei de França», negando a seguir o resultado, a ocorrência de «o actual Rei de França» é secundária e a nossa proposição é verdadeira; mas se tomarmos «x não é calvo» e substituirmos «x» por «o actual Rei de França», então «o actual Rei de França» tem uma ocorrência primária e a proposição é falsa. A confusão entre ocorrên-
cia primária e ocorrência secundária é uma fonte imediata de falácias no que concerne as descrições.

As descrições ocorrem em matemática principalmente sob a forma de *funções descritivas*, isto é, «o termo que tem a relação R com y», ou «o R de y», como podemos dizer, por analogia com «o pai de y» e frases semelhantes. Dizer «o pai de y é rico», por exemplo, é dizer que a função proposicional de c: «c é rico e “x gerou y” é sempre equivalente a “x é c”» é «algumas vezes verdadeira», isto é, é verdadeira para pelo menos um valor de c. É óbvio que ela não pode ser verdadeira para mais de um valor.

A teoria das descrições, ligeiramente esboçada no presente capítulo, é da mais alta importância tanto em lógica como na teoria do conhecimento. Mas, para fins matemáticos, as partes mais filosóficas da teoria não são essenciais, tendo sido, portanto, omitidas na apreciação acima, a qual foi limitada aos requisitos matemáticos mínimos.
No presente capítulo, consideraremos os artigos «os», «as»: os habitantes de Londres, os filhos de ricos e assim por diante. Por outras palavras, trataremos das classes. Vimos, no Cap. II, que um número cardinal deve ser definido como uma classe de classes, e, no Cap. III, que o número 1 deve ser definido como a classe de todas as classes singulares, isto é, de todas as classes que têm apenas um membro, como gostaríamos de dizer, não fosse o círculo vicioso. Naturalmente, quando o número 1 é definido como a classe de todas as classes singulares, «classes singulares» devem ser definidas de forma a supor que saibamos o que significa «um»; na verdade, elas são definidas de modo estreitamente análogo ao usado para as descrições, a saber: Diz-se que uma classe α é uma classe «singular» se a proposição «"x é um α" é sempre equivalente a “x é c”» (considerada como função proposicional de c) não é sempre falsa, isto é, em linguagem mais comum, se há um termo c tal que x será membro de α quando x é c, mas não de outro modo. Isto dá-nos uma definição de classe singular se já soubermos o que seja uma classe em geral. Até agora, ao lidarmos com a aritmética, tratámos a noção de «classe» como primitiva. Mas, por motivos apresentados no Cap. XIII, se não por outros, não podemos aceitar «classe» como uma noção primitiva. Devemos buscar uma definição seguindo a mesma linha de pensamento que para as descrições, isto é, uma definição que dê significado a proposições em cuja expressão verbal ou simbólica ocorram palavras ou símbolos que aparentemente representam classes, mas que, após uma análise conveniente de tais proposições, dê um significado que elimine de vez toda a menção a classes. Poderemos então dizer que os símbolos de classe são meras conveniências, não representando objectos chamados «classes» e que as classes são, de facto, como as descrições, ficções lógicas, ou (como é comum dizer) «símbolos incompletos».

A teoria das classes está menos completa do que a teoria das descrições e há razões (que apresentaremos em esboço) para não se
considerar definitivamente satisfatória a definição de classe que será sugerida. Parece ser necessário ter mais subtileza; mas as razões para se considerar a definição que será apresentada aproximadamente correcta e em linhas certas são irresistíveis.

A primeira coisa é perceber a razão pela qual as classes não podem ser consideradas parte do equipamento final do universo. É difícil explicar precisamente o que se quer dizer com esta asserção, mas uma consequência pode ser usada para elucidar o seu significado. Se tivéssemos uma linguagem simbólica completa, com uma definição para toda a coisa definível e um símbolo não-definido para toda a coisa indefinível, os símbolos não definidos desta linguagem representariam simbolicamente o que quero dizer por «o equipamento final do universo». Afirmo que nenhum símbolo, seja para «classe» em geral ou para classes em particular, seria incluído nesse aparato de símbolos não definidos. Por outro lado, todas as coisas particulares que existem no mundo deveriam ter nomes que seriam incluídos entre os símbolos não definidos. Podemos tentar evitar esta conclusão pelo uso de descrições. Tome-se (digamos) «a última coisa que César viu antes de morrer». Isto é uma descrição de algo particular; podemos usar esta descrição (num sentido perfeitamente legítimo) como uma definição daquele particular. Mas se «a» é um nome para o mesmo particular, uma proposição em que «a» ocorra não é (como vimos no capítulo precedente) idêntica ao que esta proposição se torna quando substituímos «a» por «a última coisa que César viu antes de morrer». Se a nossa linguagem não contém o mesmo «a», ou algum outro nome para o mesmo particular, não teremos meio algum para exprimir a proposição que exprimimos por meio de «a», ao contrário da que exprimimos por meio da descrição. Assim, as descrições não possibilitariam uma linguagem perfeita para prescindir de nomes para todos os particulares. Afirmo, a este respeito, que as classes diferem dos particulares e não necessitam ser representadas por símbolos não definidos. O nosso propósito imediato é dar as razões para esta opinião.

Já vimos que as classes não podem ser consideradas espécies de indivíduos, por motivo da contradição sobre as classes que não são membros de si próprias (explicado no Cap. XIII), e porque podemos provar que o número de classes é maior do que o número de indivíduos.

Não podemos considerar as classes do modo extensional puro simplesmente como amontoados ou aglomerados. Se tentássemos fazê-lo constataríamos ser impossível entender como pode haver uma classe como a classe vazia, que não tem membro algum, não podendo ser considerada um «amontoado»; também teríamos muita dificuldade
em compreender como uma classe que só tem um membro não é idêntica a esse membro. Não pretendo afirmar ou negar que haja entidades como «amontoados». Como lógico matemático, não sou chamado a opinar sobre esse ponto. Tudo o que afirmo é que, se há amontoados, não os podemos identificar com as classes compostas dos seus elementos constitutivos.

Chegaremos muito mais próximo de uma teoria satisfatória se tentarmos identificar as classes com as funções proposicionais. Como explicámos no Cap. II, toda a classe é definida por alguma função proposicional que é verdadeira para os membros da classe e falsa com respeito a outras coisas. Mas, se uma classe pode ser definida por uma função proposicional, pode ser igualmente bem definida por qualquer outra que seja verdadeira quando a primeira for verdadeira e falsa quando a primeira for falsa. Por esta razão a classe não pode ser identificada com tal função proposicional mais do que com qualquer outra — e, dada uma função proposicional, há sempre muitas outras que são verdadeiras quando ela é verdadeira e falsas quando ela é falsa. Dizemos que duas funções proposicionais são «formalmente equivalentes» quando isto acontece. Duas proposições são «equivalentes» quando ambas são verdadeiras ou ambas são falsas; duas funções proposicionais \(\phi \) e \(\psi \) são «formalmente equivalentes» quando \(\phi \) é sempre equivalente a \(\psi \). É o facto de haver outras funções proposicionais formalmente equivalentes a uma função proposicional dada que impossibilita identificar uma classe com uma função proposicional; pois desejamos que as classes sejam tais que não haja duas classes distintas com exactamente os mesmos membros, e, portanto, duas funções proposicionais formalmente equivalentes terão de determinar a mesma classe.

Depois de ter decidido que as classes não podem ser coisas da mesma espécie que os seus membros, que não podem ser apenas amontoados ou agregados e também que não podem ser identificadas com funções proposicionais, torna-se muito difícil vermos o que elas podem ser, caso sejam mais do que fícções simbólicas. E se pudermos encontrar algum meio de lidar com elas como fícções simbólicas, aumentaremos a segurança lógica da nossa posição, porquanto evitaremos a necessidade de supor que haja classes sem sermos compelidos a fazer a suposição oposta de que não há classes. Meramente nos abstemos de ambas as suposições. Isto é um exemplo de navalha de Ockham, a saber, «as entidades não devem ser multiplicadas sem
necessidade». Mas quando recusamos afirmar que há classes, não se deve supor que estamos a afirmar categoricamente que não há classe alguma. Somos meramente agnósticos a seu respeito: como Laplace, podemos dizer que «je n’ai pas besoin de cette hypothèse».

Estabelecemos as condições que um símbolo deve preencher para que sirva como uma classe. Penso que se constatará serem as seguintes condições necessárias e suficientes:

1. Toda a função proposicional deve determinar uma classe, constituída por todos os argumentos para os quais a função proposicional é verdadeira. Dada qualquer proposição (verdadeira ou falsa) digamos, sobre Sócrates, podemos imaginar Sócrates substituído por Platão ou por Aristóteles ou por um gorila ou pelo homem da Lua ou por qualquer outro indivíduo do mundo. Algumas destas substituições darão proposições verdadeiras e outras darão proposições falsas. A classe assim determinada consistirá de todos os substituindo que dão uma proposição verdadeira. Naturalmente, ainda temos de decidir o que queremos dizer por «todos os que, etc.». Tudo o que estamos a observar no momento é que uma classe é determinada por uma função proposicional e que toda a função proposicional determina uma classe apropriada.

2. Duas funções formalmente equivalentes devem determinar a mesma classe, e duas que não são formalmente equivalentes devem determinar classes diferentes. Isto é, uma classe é determinada pelo conjunto dos seus membros, não podendo duas classes diferentes ter o mesmo conjunto de membros. (Se uma classe é determinada por uma função proposicional ϕx, dizemos que a é um «membro» da classe se ϕa for verdadeira).

3. Devemos encontrar algum meio de definir não apenas as classes, mas também as classes de classes. Vimos no Cap. II que os números cardinais devem ser definidos como classes de classes. A frase comum da matemática elementar «a combinação de n coisas tomadas m a m», representa uma classe de classes, a saber, a classe de todas as classes de m termos que podem ser selecionados de uma...

140 [William de Ockham (c. 1287-1347), frade franciscano, filósofo e teólogo inglês, formado em Oxford. Foi o iniciador do nominalismo escolástico, defensor da separação dos poderes espiritual e secular e da autonomia da razão nos afazeres humanos, o que lhe granjeou não poucos inimigos. Nas suas discussões filosóficas e teológicas utilizou frequentemente e popularizou o princípio medieval «Pluralitas non est ponenda sine necessitate», o qual ficou conhecido por «Navalha de Ockham».]
XVII. Classes

dada classe de \(n \) termos. Sem algum método simbólico de lidar com as classes de classes, a lógica matemática ruiria.

(4) Será, em todas as circunstâncias, considerado sem sentido (não falso) supor que uma classe seja ou que ela não seja um membro de si mesma. Isto resulta da contradição que discutimos no Cap. XIII.

(5) Finalmente — e esta é a condição mais difícil de ser preenchida —, deve ser possível fazer proposições sobre todas as classes que são compostas de indivíduos, ou sobre todas as classes que são compostas de objectos de qualquer «tipo» lógico. Se assim não fosse, muitas aplicações das classes seriam perdidas — por exemplo, a indução matemática. Ao definir a posteridade de um determinado termo, necessitamos de poder dizer que um membro da posteridade pertence a todas as classes hereditárias a que pertence o termo dado, e isto exige o tipo de totalidade que está em questão. A razão de ser da dificuldade em torno disto está em se poder provar ser impossível falar-se de todas as funções proposicionais que podem ter argumentos de um tipo dado.

Ignoraremos, para começar, esta última condição e os problemas a que ela dá origem. As duas primeiras condições podem ser tomadas em conjunto. Elas declaram que deve haver uma classe, nem mais nem menos, para cada grupo de funções proposicionais formalmente equivalentes; por exemplo, a classe dos homens tem de ser a mesma que a dos bipes sem penas, ou dos animais racionais, ou dos Yahoos, ou de qualquer outra característica preferida para definir os seres humanos. Mas, quando dizemos que duas proposições formalmente equivalentes poderão não ser idênticas, embora definam a mesma classe, podemos provar a verdade desta asserção mostrando que uma afirmação pode ser verdadeira a respeito de uma função proposicional e falsa a respeito da outra; por exemplo, «creio que todos os homens são mortais» pode ser falsa, porquanto posso acreditar falsamente que a Fênix seja um animal racional imortal. Assim, somos levados a considerar as asserções sobre funções, ou (mais correctamente) as funções de funções.

Algumas das coisas que se podem dizer sobre uma função proposicional podem ser consideradas como sendo ditas sobre a classe definida pela função proposicional, enquanto outras não. A frase «todos os homens são mortais» envolve as funções «x é humano» e «x é mortal»; ou, se preferirmos, poderemos dizer que envolve as classes homens e mortais. Podemos interpretar a frase de qualquer uma destas maneiras, porque o seu valor lógico é inalterado se substituímos «x é humano» ou «x é mortal» por qualquer função proposicional formalmente equivalente. Mas, como acabamos de ver, a frase «eu creio que
todos os homens são mortais» não pode ser considerada como sendo a
respeito da classe determinada por qualquer uma destas funções
proposicionais, porque o seu valor lógico pode ser alterado pela
substituição por uma função proposicional formalmente equivalente (o
que deixa a classe inalterada). A uma frase que envolva a função
proposicional \(\phi x \) chamaremos função «extensional» da função \(\phi x \) se
ela for como «todos os homens são mortais», isto é, se o seu valor
lógico permanecer inalterado pela substituição por qualquer função
proposicional formalmente equivalente; e quando uma função de fun-
cão proposicional não for extensional chamamos-lhe «intensional», de
modo que «eu creio que todos os homens são mortais» é uma função
proposicional intensional de «\(x \) é humano» ou «\(x \) é mortal». Assim, as
funções extensionais de uma função proposicional \(x \) podem, para fins
práticos, ser consideradas funções da classe determinada por \(x \),
enquanto as funções intensionais não podem ser assim consideradas.

Cabe observar que todas as funções de funções\(^{141}\) especificas que
temos ocasião de introduzir em lógica matemática são extensionais.
Assim, por exemplo, as duas funções de funções fundamentais são:
«\(\phi x \) é sempre verdadeira» e «\(\phi x \) é algumas vezes verdadeira». Cada
uma delas tem o seu valor lógico inalterado se \(\phi x \) for substituída por
qualquer função proposicional formalmente equivalente. Na linguag-
gem das classes, se \(\alpha \) é a classe determinada por \(\phi x \), «\(\phi x \) é sempre
verdadeira» é equivalente a «tudo é membro de \(\alpha \)», e «\(\phi x \) é algumas
vezes verdadeira» é equivalente a «\(\alpha \) tem membros» ou (melhor
ainda) «\(\alpha \) tem pelo menos um membro». Considere-se, novamente, a
condição para a existência de «o termo que satisfaz \(\phi x \)» considerada
no capítulo precedente. A condição é que haja um termo \(\xi \) tal que \(\phi x \)
seja sempre equivalente a «\(x \) é \(\xi \)». Trata-se, obviamente, de uma
função proposicional extensional. É equivalente à asserção de que a
class definida pela função proposicional \(\phi x \) é uma classe singular, isto
é, uma classe com um só membro; por outras palavras, uma classe que
é um membro de 1.

Dada uma função de funções que pode ser ou não extensional,
podemos sempre obter dela uma função proposicional com ela
relacionada e certamente extensional da mesma função proposicional,
da seguinte maneira: suponhamos que a nossa função de funções
original atribui a \(\phi x \) a propriedade \(f \); consideremos então a asserção
[derivada] «há uma função com a propriedade \(f \) formalmente

\(^{141}\) [As funções de funções são vulgarmente chamadas funicionais.]
equivalente a ϕx.\(^{142}\) Trata-se de uma função proposicional extensional de ϕx; é verdadeira quando a nossa asserção original é verdadeira, e é formalmente equivalente à função proposicional original de ϕx se esta função proposicional original é extensional; mas quando a função proposicional original é intensional, a função proposicional nova é mais frequentemente verdadeira do que a antiga. Por exemplo, consideremos novamente «creio que todos os homens são mortais», considerada como uma função proposicional de «x é humano». A função proposicional extensional derivada é: «Há uma função proposicional formalmente equivalente a “x é humano” e tal que creio que tudo o que a satisfizer é mortal». Esta função proposicional permanece verdadeira quando substituimos «x é humano» por «x é um animal racional», ainda que acredite falsamente que a Fénix seja racional e imortal.

Damos o nome de «função extensional derivada» à função proposicional construída do modo acima, a saber, à função proposicional: «Há uma função proposicional com a propriedade ϕ e formalmente equivalente a ϕx», em que a função proposicional original era «a função proposicional ϕx tem a propriedade ϕ».

Podemos encarar a função extensional derivada como tendo para argumento a classe determinada pela função proposicional ϕx, e como afirmando ϕ acerca desta classe. Isto pode ser tomado como a definição de uma proposição acerca de uma classe. Isto é, podemos definir:

Afirmar que «a classe determinada pela função proposicional ϕx tem a propriedade ϕ» é afirmar que ϕx satisfaz a função extensional derivada de ϕ.

Isto fornece um significado a qualquer asserção sobre uma classe que possa ser enunciada com significado sobre uma função proposicional; e constatar-se-á que, tecnicamente, produz os resultados exigidos para tornar uma teoria simbolicamente satisfatória.\(^{143}\)

O que acabamos de dizer relativamente à definição das classes é suficiente para satisfazer as nossas quatro primeiras condições. A maneira pela qual garante a terceira e a quarta, a saber, a possibilidade das classes de classes e a impossibilidade de uma classe ser ou não ser membro de si mesma, é algo técnica; isto é explicado nos Principia Mathematica, mas pode ser aqui considerado facto consumado.

\(^{142}\) [Tentativas de simbolização: \(f(\phi x)\) para expressar que \(\phi x\) tem a propriedade \(f\), \(\exists \psi[f(\psi) \land \forall x(\phi x \leftrightarrow \psi x)]\) para a asserção derivada, que mais adiante será chamada função proposicional extensional derivada.]

\(^{143}\) Ver Principia Mathematica, Vol. I, 75–84 e *20.
Resulta que podemos considerar a nossa tarefa cumprida, excepto no que respeita a quinta condição. Mas esta condição — a mais importante e a mais difícil — não é preenchida em virtude do que quer que tenhamos dito até agora. A dificuldade está relacionada com a teoria dos tipos, e deve ser brevemente discutida.\footnote{O leitor que desejar uma discussão mais completa deverá consultar \textit{Principia Mathematica}, Introdução, Cap. II; também *12.}

Vimos no Cap. XIII que há uma hierarquia de tipos lógicos e que constitui uma falácia permitir que um objecto pertencente a um desses tipos possa ser substituído por um objecto pertencente a outro. Mas não é difícil mostrar que as várias funções proposicionais que podem ter um objecto a como argumento não são todas de um mesmo tipo. Chamemo-lhes funções-a. Podemos tomar primeiro aquelas que não envolvem referência a qualquer coleção de funções; a estas chamaremos «funções-a predicativas». Se passarmos agora às funções que envolvem referência à totalidade de funções-a predicativas, incorreremos numa falácia caso as consideremos do mesmo tipo que as funções-a predicativas. Tome-se uma frase do dia-a-dia como «a é um francês típico». Como definiремos um francês «típico»? Podemos defini-lo como aquele que «possui todas as qualidades possuídas pela maioria dos franceses». Mas a menos que limitemos «todas as qualidades» àquelas que não envolvem referência a qualquer totalidade de qualidades, teremos de observar que a maioria dos franceses \textit{não são típicos} no sentido acima, e, portanto, a definição mostra que não ser típico é essencial a um francês típico. Não se trata de uma contradição lógica, pois não há razão alguma para que exista algum francês típico; mas ilustra a necessidade de separar as qualidades que envolvem referência a uma totalidade de qualidades das que não a envolvem.

Sempre que, por meio de frases sobre «todos» ou «alguns» dos valores que uma variável pode assumir significativamente, geramos um novo objecto, este novo objecto não deve estar entre os valores que a nossa variável anterior poderia assumir, pois, caso contrário, a totalidade de valores que poderia ser percorrida pela variável só seria definível em termos de si mesma e estaríamos envolvidos num círculo vicioso.\footnote{[Temos aqui uma referência ao \textit{Princípio do Círculo Vicioso} tão caro a Russell e já anteriormente veiculado por Henri Poincaré no contexto das definições impredicativas. Acontece que investigações posteriores mostraram que não vem mal ao mundo da parte de definições impredicativas (as que tentam definir uma entidade em termos de uma totalidade à qual ela pertence), antes pelo contrário, elas são indispensáveis na matemática.]} Por exemplo, se digo que «Napoleão tinha todas as
qualidades que fazem um grande general», devo definir «qualidades» de tal maneira que não incluam o que agora estou a referir, isto é, «ter todas as qualidades que fazem um grande general» não deve ser ela mesma uma qualidade no sentido suposto. Isto é bastante óbvio e constitui o princípio que leva à teoria dos tipos pela qual os paradoxos dos círculos viciosos são evitados. Quanto à aplicação às funções-\(\alpha\), podemos supor que «qualidades» devam significar «funções proposicionais predicativas». Então, quando digo que «Napoleão tinha todas as qualidades, etc.», quero dizer que «Napoleão satisfaz todas as funções predicativas, etc.». Esta asserção atribui uma propriedade a Napoleão, mas não uma propriedade predicativa; fugimos assim ao círculo vicioso. Mas sempre que ocorre a expressão «todas as funções que», as funções em questão devem ser limitadas a um tipo lógico determinado para que se evite um círculo vicioso; e, como Napoleão e o francês típico mostraram, o tipo de uma função proposicional não fica determinado pelo do argumento. Seria necessária uma discussão muito mais completa para se desenvolver plenamente esse ponto, mas o que foi dito poderá bastar para esclarecer que as funções que podem ter um dado argumento pertencem a uma cadeia infinita de tipos. Poderíamos, por meio de vários dispositivos técnicos, construir uma variável que percorresse os primeiros \(n\) destes tipos, com \(n\) finito, mas não podemos construir uma variável que percorra todos eles, e, se pudéssemos, esse mero facto geraria de imediato um novo tipo de função proposicional com os mesmos argumentos e poria todo o processo novamente em marcha.

Às funções-\(\alpha\) predicativas chamamos funções-\(\alpha\) do primeiro tipo; às funções-\(\beta\) que envolvem referências à totalidade do primeiro tipo chamamos o segundo tipo e assim por diante. Nenhuma função-\(\alpha\) variável pode percorrer todos esses tipos diferentes: deverá parar em algum tipo definido.

Estas considerações são relevantes para a nossa definição de função extensional derivada. Falamos aí de «uma função formalmente equivalente a \(\phi x\)». É necessário decidir sobre o tipo da nossa função. Qualquer decisão servirá, mas alguma decisão é inevitável. Chamemos \(\psi\) à suposta função proposicional formalmente equivalente. Então, \(\psi\) aparece como uma variável e deve ser de algum tipo determinado.

Tudo o que sabemos necessariamente sobre o tipo de \(\phi \) é que admite argumentos de um determinado tipo — que é (digamos) uma função-\(a\). Mas isto, como vimos há pouco, não determina o seu tipo. Para que possamos (como exige o nosso quinto requisito) lidar com todas as classes cujos membros são do mesmo tipo que \(a \), devemos ser capazes de definir todas estas classes por meio de funções de algum tipo; equivale a dizer, deve haver algum tipo de função-\(a\), digamos \(n\)-ésima, tal que qualquer função-\(a\) seja formalmente equivalente a alguma função-\(a\) do \(n\)-ésimo tipo. Se tal for o caso, então qualquer função extensional que seja satisfeita por todas as funções-\(a\) do \(n\)-ésimo tipo será satisfeita por todas as funções-\(a\). É principalmente como um meio técnico de corporizar uma suposição conducente a este resultado que as classes são úteis. A suposição é chamada «axioma da redutibilidade» e pode ser assim enunciada:

«Há um tipo (digamos, \(r \)) de função-\(a\) tal que toda a função-\(a\) é formalmente equivalente a alguma função proposicional do tipo em questão».

Se este axioma for admitido, usamos funções desse tipo para definir as nossas funções extensionais associadas. As asserções sobre todas as classes-\(a\) (isto é, todas as classes definidas por funções-\(a\)) podem ser reduzidas a asserções sobre todas as funções-\(a\) do tipo \(r \). Enquanto estiverem envolvidas apenas funções extensionais de funções, isso dá-nos, na prática, resultados que de outro modo exigiriam a impossível noção de «todas as funções-\(a\)». Uma área particular em que isto é vital é a da indução matemática.

O axioma da redutibilidade envolve tudo o que é realmente essencial na teoria das classes. Portanto, vale a pena perguntar se há alguma razão para se supor verdadeiro.

Este axioma, como o axioma multiplicativo e o axioma do infinito, é necessário para certos resultados, mas não para a simples existência do raciocínio dedutivo. A teoria da dedução, conforme explicada no Cap. XIV, e as leis para as proposições que envolvem «todos» e «alguns», são da própria textura do raciocínio matemático: sem elas, ou algo semelhante a elas, não apenas não obteríamos os mesmos resultados, mas não obteríamos resultado algum. Não as podemos usar como hipóteses e deduzir consequências hipotéticas, pois elas são tanto regras de dedução como premissas. Elas têm de ser absolutamente verdadeiras, ou então tudo aquilo que deduzimos por seu intermédio nem sequer seria consequência das premissas. Por outro lado, o axioma da redutibilidade, como os nossos dois axiomas matemáticos anteriores, poderia igualmente ser enunciado como uma hipótese onde quer que fosse usado, em vez de pressupor ser
realmente verdadeiro. Podemos deduzir as suas consequências hipotéticamente; podemos também deduzir as consequências de supô-lo falso. E, portanto, apenas conveniente e não necessário. E, em vista da complicação da teoria dos tipos e da incerteza de tudo excepto dos seus princípios mais gerais, foi impossível até agora dizer se não poderá haver algum modo de prescindir totalmente do axioma da redutibilidade. Todavia, se admitirmos a correção da teoria esboçada acima, que poderemos dizer sobre a verdade ou falsidade deste axioma?

O axioma, como podemos observar, é uma forma generalizada do princípio da identidade dos indiscerníveis, de Leibniz, que admitiu, como princípio lógico, que dois sujeitos diferentes têm de diferir no tocante aos predicados. Mas os predicados são apenas algumas das chamadas «funções predicativas», que também incluem relações entre termos dados e várias propriedades que não devem ser consideradas predicados. Assim, a suposição de Leibniz é muito mais estrita e estreita do que a nossa. (Não, naturalmente, de acordo com a sua lógica, que considerava todas as proposições como redutíveis à forma sujeito-predicado). Mas não há nenhuma boa razão para acreditar na sua forma, ao que se me afigura. Poderá muito bem haver, como possibilidade lógica abstracta, duas coisas que tenham exactamente os mesmos predicados, no sentido estreito em que vimos a utilizar a palavra «predicado». Como se apresentará o nosso axioma se passarmos além dos predicados neste sentido estreito? Não parece haver, no mundo real, modo algum de duvidar de sua verdade empírica no tocante a particulares, em razão da diferenciação espaço-temporal: não há dois particulares com exactamente as mesmas relações espaciais e temporais com todos os outros particulares. Mas isto é, por assim dizer, um acidente, um facto sobre o mundo no qual acontece nos encontrarmos. A lógica pura e a matemática pura (que é a mesma coisa) visam serem verdadeiras, na terminologia leibnitziana, em todos os mundos possíveis, não apenas neste mundo desordenado em que o acaso nos aprisionou. Há uma certa fidalguia que o lógico deve preservar: ele não deve condescender em deduzir argumentos das coisas que vê à sua volta.

Visto deste ponto de vista estritamente lógico, não vejo qualquer razão para acreditar que o axioma da redutibilidade seja logicamente necessário, que é o que se quereria dizer ao afirmar que ele é verdadeiro em todos os mundos possíveis. A admissão deste axioma num sistema de lógica é, portanto, um defeito, ainda que o axioma seja empiricamente verdadeiro. É por esta razão que a teoria das classes não pode ser considerada tão completa quanto a teoria das descrições.
É necessário trabalhar mais na teoria dos tipos, na esperança de chegar a uma doutrina de classes que não exija esta dúbia suposição. Mas é razoável considerar-se a teoria esboçada no presente capítulo correcta nas suas linhas principais, isto é, na sua redução de proposições nominalmente sobre classes a proposições sobre as suas funções proposicionais definidoras. O evitar das classes como entidades por este método deve, ao que parece, ser segura em princípio, embora ainda possam ser precisos ajustes nos pormenores. É pelo facto de isto parecer inevitável que incluímos a teoria das classes, a despeito do nosso desejo de excluir, o mais possível, o que parecesse aberto a sérias dúvidas.

A teoria das classes, acima esboçada, reduz-se a um axioma e uma definição. Para referência, repetimos-los aqui. O axioma é:

Existe um tipo τ tal que, se ϕ é uma função proposicional que pode admitir um objecto dado a como argumento, então há uma função proposicional ψ do tipo τ que é formalmente equivalente a ϕ.

A definição é:

Se ϕ é uma função proposicional que pode admitir um objecto dado a como argumento, e τ o tipo mencionado no axioma acima, então dizer que a classe determinada por ϕ tem a propriedade f é dizer que há uma função proposicional ψ do tipo τ formalmente equivalente a ϕ, com a propriedade f.
CAPÍTULO XVIII

Matemática e lógica

Históricamente falando, a matemática e a lógica têm sido domínios de estudo inteiramente distintos. A matemática tem estado relacionada com a ciência e a lógica com o idioma grego. Mas ambas se desenvolveram nos tempos modernos: a lógica tornou-se mais matemática e a matemática tornou-se mais lógica. Em consequência, tornou-se agora inteiramente impossível traçar uma linha divisória entre as duas; na verdade, as duas são uma. Diferem entre si como rapaz e homem: a lógica é a juventude da matemática e a matemática é a maturidade da lógica. Este ponto de vista é mal aceite pelos lógicos que, por terem passado a vida a estudar os textos clássicos, são incapazes de acompanhar um trecho de raciocínio simbólico, e pelos matemáticos que aprenderam uma técnica sem se darem ao trabalho de indagar sobre o seu significado ou justificação. Felizmente, ambas as categorias estão agora a rarear cada vez mais. Muito do trabalho matemático moderno encontra-se obviamente na fronteira da lógica, e a lógica moderna é tão simbólica e formal, que a relação muito estreita entre lógica e matemática tornou-se óbvia para todo o estudante instruído. A prova da sua identidade é, naturalmente, uma questão de pormenor: ao começar com premissas que seriam universalmente admitidas como pertencentes à lógica, e chegar, por dedução, a resultados que de modo igualmente óbvio pertencem à matemática, constatamos não haver um ponto pelo qual possa ser traçada uma linha distinta, a separar a lógica à esquerda e a matemática à direita. Se ainda existirem aqueles que não admitem a identidade entre lógica e matemática, podemos desafiá-los a indicar em que ponto, nas definições e deduções sucessivas de Principia Mathematica, consideram que a lógica termina e a matemática principia. Será então óbvio que qualquer resposta terá de ser assaz arbitrária.

Nos capítulos iniciais deste livro, a começar nos números naturais, definimos «número cardinal» e mostramos como generalizar o conceito de número, e analisamos então os conceitos envolvidos na definição, até nos confrontarmos com os fundamentos da lógica. Num tratamento
Introdução à Filosofia Matemática

sintético, dedutivo, estes fundamentos vêm primeiro e os números naturais só são alcançados após uma longa jornada. Tal tratamento, embora formalmente mais correcto do que o que adoptámos, é mais difícil para o leitor, porque os conceitos e proposições lógicos de partida são remotos e pouco familiares em comparação com os números naturais. Além disso, eles representam a fronteira actual do conhecimento, para além da qual está o ainda desconhecido; e o domínio do conhecimento sobre eles ainda não está bem seguro.

Costumava dizer-se que a matemática é a ciência da «quantidade». «Quantidade» é uma palavra vaga, mas, para argumentar, podemos substituir-la pela palavra «número». A afirmação de que a matemática é a ciência do número seria inverídica de dois modos diferentes. Por um lado, há ramos reconhecidos da matemática que nada têm a ver com o número — toda a geometria que não usa coordenadas ou medição, por exemplo: a geometria projectiva e descritiva, até ao ponto em que são introduzidas coordenadas, nada tem a ver com número, ou mesmo com quantidade, no sentido de maior e menor. Por outro, tornou-se possível, por meio da definição de cardinais, da teoria da indução e das relações de ascendência, da teoria geral das cadeias, e das definições das operações aritméticas, generalizar muito do que costumava ser provado somente em ligação com os números. O resultado é que o que era anteriormente o estudo único da aritmética se tornou agora dividido em vários estudos separados, nenhum dos quais especialmente ligado aos números. As propriedades mais elementares dos números estão ligadas às relações de um-para-um e à equipotência entre classes. A adição está ligada à construção de classes mutuamente exclusivas respectivamente equipotentes a um conjunto de classes que não sabe se são mutuamente exclusivas. A multiplicação é fundida com a teoria das «escolhas», isto é, de um certo tipo de relações de um-para-muitos. A finitude é fundida com o estudo geral das relações de ascendência, que produz toda a teoria da indução matemática. As propriedades comuns dos vários tipos de cadeias numéricas, e os elementos da teoria da continuidade de funções e os limites de funções, podem ser generalizados de modo a não mais envolverem qualquer referência essencial aos números. É um princípio de todo o raciocínio formal generalizar ao máximo, pois desta maneira asseguramos que qualquer processo de dedução tenha resultados mais amplamente aplicáveis; ao generalizarmos assim o raciocínio aritmético, estamos, portanto, meramente a seguir um preceito que é universalmente admitido em matemática. E ao generalizarmos deste modo, criamos, na verdade, um conjunto de sistemas dedutivos novos, nos quais a aritmética é imediatamente dissolvida e ampliada; mas se
algum destes novos sistemas dedutivos — por exemplo, a teoria das escolhas — deve ser declarado como pertencente à lógica ou à aritmética, é coisa inteiramente arbitrária e incapaz de ser racionalmente decidida.

Somos agora colocados face a face com a questão: que assunto é este, que pode ser chamado indiferentemente matemática ou lógica? Haverá algum modo pelo qual poderemos defini-lo?

Certas características do assunto em questão são claras. Para começar, neste assunto não tratamos com coisas particulares ou propriedades particulares: tratamos formalmente com o que pode ser afirmado sobre qualquer coisa ou qualquer propriedade. Estamos preparados para dizer que um e um são dois, mas não que Sócrates e Platão são dois, porque, nas nossas capacidades lógicas ou matemáticas puras, nunca ouvimos falar de Sócrates e Platão. Um mundo no qual não tenham existido tais indivíduos ainda seria um mundo no qual um e um seria igual a dois. Não nos compete, como matemáticos puros ou lógicos, mencionar seja o que for, porque, se o fizermos, introduziremos algo irrelevante e não formal. Podemos esclarecer isto fazendo uma aplicação ao caso do silogismo. A lógica tradicional diz: «Todos os homens são mortais, Sócrates é um homem, portanto Sócrates é mortal». Mas é claro que o que queremos afirmar é, para começar, apenas que as premissas implicam a conclusão, não que as premissas e a conclusão sejam realmente verdadeiras; até mesmo a lógica mais tradicional diz que a verdade real das premissas é irrelevante para a lógica. Assim, a primeira modificação a ser feita no silogismo tradicional acima é enunciá-lo da seguinte forma: «Se todos os homens são mortais e Sócrates é um homem, então Sócrates é mortal». Podemos agora observar que se pretende comunicar que esse argumento é válido em virtude da sua forma e não em virtude dos termos particulares que nele ocorrem. Se tivéssemos omitido «Sócrates é um homem» das nossas premissas, teríamos um argumento não formal, somente admissível porque Sócrates é de facto um homem; neste caso não teríamos podido generalizar o argumento. Mas quando, como acima, o argumento é formal, nada depende dos termos que nele ocorrem. Assim, podemos substituir homens por α, mortais por β e Sócrates por x, onde α e β são classes quaisquer e x é um indivíduo qualquer. Chegamos então ao enunciado: «Independente dos valores que x, α e β possam ter, se todos os α forem β e x for um α, então x é um β; por outras palavras, «a função proposicional “se todos os α são β e x é um α, então x é um β” é sempre verdadeira». Temos aqui, finalmente, uma proposição da lógica — aquela que é
meramente sugerida pelo enunciado tradicional sobre Sócrates e homens e mortais.

É claro que, se temos em mira o raciocínio formal, chegaremos sempre a enunciados de silogismos como acima, nos quais não são mencionadas coisas nem propriedades actuais; isto acontecerá através do mero desejo de não desperdiçarmos o nosso tempo provando num caso particular o que pode ser provado geralmente. Seria ridículo demorar-nos num longo argumento sobre Sócrates e depois passarmos precisamente pelo mesmo argumento sobre Platão. Se o nosso argumento se aplica (digamos) a todos os homens, prová-lo-emos relativamente a \(\langle x \rangle \), com a hipótese \(\langle x \rangle \) é um homem\). Com esta hipótese o argumento conservará a sua validade hipotética até mesmo quando \(x \) não for um homem. Mas constataremos que o nosso argumento ainda seria válido se, em vez de supor que \(x \) é um homem, supusermos que seja um macaco ou um ganso ou um Primeiro-Ministro. Não devemos, portanto, desperdiçar o nosso tempo tomando para premissa \(\langle x \rangle \) é um homem\) mas tomaremos antes \(\langle \alpha \rangle \), em que \(\alpha \) é uma classe qualquer de indivíduos, ou \(\langle \phi(x) \rangle \) em que \(\phi \) é uma função proposicional qualquer de algum tipo especificado. Assim, a ausência de toda a menção a coisas ou propriedades particulares em lógica ou matemática pura é uma resultante necessária do facto de este estudo ser, como se diz, «puramente formal».

Por esta altura enfrentamos um problema que é mais fácil enunciar do que resolver. O problema é: «Quais são as componentes de uma proposição lógica?» Não sei a resposta, mas proponho-me explicar como surge o problema.\(^{146}\)

Tome-se (digamos) a proposição «Sócrates é anterior a Aristóteles». Aqui, parece óbvio que temos uma relação entre dois termos e que as componentes da proposição (bem como do facto correspondente) são simplesmente os dois termos e a relação, isto é, Sócrates, Aristóteles e precedência. (Ignoro o facto de Sócrates e Aristóteles não serem simples; e também o facto de que o que parecem ser os seus nomes são na realidade descrições truncadas. Nenhum desses factos é relevante para a questão presente. Podemos representar a forma geral de tais proposições por \(\langle xRy \rangle \), que se pode ler: \(x \) tem a relação \(R \) com \(y \). Esta forma geral pode ocorrer nas proposições lógicas, mas nenhum caso particular dela pode ocorrer. Poderemos daí inferir que a

\(^{146}\) [Nas chamadas linguagens formais (ver adiante), o problema da decomposição em componentes lógicas e não lógicas fica automaticamente resolvido na especificação do alfabeto lógico e não lógico e na sua sintaxe.]
forma geral em si mesma seja uma componente de tais proposições lógicas?

Dada uma proposição, como «Sócrates é anterior a Aristóteles», temos certas componentes e também uma certa forma. Mas a forma não é em si mesma uma nova componente; se fosse, necessitariamos de uma nova forma para englobar tanto ela como as outras componentes. Podemos, na realidade, transformar todas as componentes de uma proposição em variáveis, mantendo, ao mesmo tempo, inalterada a forma. É isso o que fazemos quando usamos um esquema como \(xRy \), que representa qualquer uma de uma certa classe de proposições, a saber, aquelas que enunciam relações entre dois termos. Podemos passar a asserções gerais, tal como \(\forall x \forall y \) é algumas vezes verdadeira\(\) — isto é, há particulares que satisfazem relações binárias. Esta asserção pertencerá à lógica (ou matemática) no sentido em que estamos a usar a palavra. Mas nesta asserção não mencionamos quaisquer coisas particulares ou relações particulares; nenhuma coisa ou relação particular poderá jamais entrar numa proposição da lógica pura. Ficamos com as formas puras como as únicas componentes possíveis das proposições lógicas.

Não desejo afirmar positivamente que as formas puras — por exemplo, da forma \(xRy \) — entrem realmente em proposições da espécie que estamos a considerar. A questão da análise de tais proposições é difícil, com considerações conflituosas de um lado e do outro. Não podemos cuidar desta questão agora, mas podemos aceitar, como primeira aproximação, o ponto de vista de que são as formas que entram nas proposições lógicas como componentes. E podemos explicar (embora não possamos definir formalmente) o que queremos dizer por «forma» de uma proposição, como segue:

A «forma» de uma proposição é aquilo que nela permanece inalterado quando toda a componente da proposição é substituída por outra.

Assim, «Sócrates é anterior a Aristóteles» tem a mesma forma que «Napoleão é maior do que Wellington», embora todas as componentes das duas proposições sejam diferentes.

Podemos então estabelecer, como uma característica necessária (embora não suficiente) das proposições lógicas ou matemáticas, que elas sejam tais que possam ser obtidas de uma proposição que não contenha variável alguma (isto é, nenhuma palavra como todos, algum, um, o, etc.) mediante a transformação de toda a componente numa variável e a asserção que o resultado é sempre ou é algumas vezes verdadeiro, ou que é sempre verdadeiro com respeito a algumas variáveis e é algumas vezes verdadeiro com respeito às outras, ou qualquer outra variante destas combinações. É outra maneira de
enunciar a mesma coisa é dizer que a lógica (ou a matemática) se interessa somente nas formas, e está interessada nelas somente no tocante à maneira de afirmar que são sempre ou algumas vezes verdadeiras — com todas as permutações de «sempre» e «algumas vezes» que possam ocorrer.

Em todas as linguagem existem algumas palavras cuja única função é indicar a forma. Estas palavras, de modo geral são mais comuns nas linguagens que têm menos inflexões. Veja-se «Sócrates é humano». Aqui, «é» não constitui uma componente da proposição, mas apenas indica a forma sujeito-predicado. Analogamente, em «Sócrates é anterior a Aristóteles», «é» e «a» meramente indicam forma; a proposição é a mesma que «Sócrates é anterior a Aristóteles», na qual aquelas palavras desapareceram e a forma é indicada de outro modo. A forma pode, via de regra, ser indicada de outro modo que não por palavras específicas; a ordem das palavras pode fazer mais pelo que se pretende. Mas não se deve insistir demasiado neste princípio. Por exemplo, é difícil ver como poderíamos exprimir convenientemente formas moleculares de proposições (isto é, aquilo a que chamamos «funções de verdade») sem palavra alguma. Vimos no Cap. XIV que uma palavra ou símbolo é suficiente para este propósito, a saber, uma palavra ou símbolo que exprima incompatibilidade. Mas sem uma, pelo menos, ficaríamos em dificuldades. Esta não é, todavia, a questão mais importante para o nosso propósito actual. O que é importante é observar que a forma poderá ser o único ingrediente que importa numa proposição geral, até mesmo quando nenhuma palavra ou símbolo nesta proposição designar a forma. Se desejamos falar da própria forma, devemos ter uma palavra para ela; mas, se desejamos falar sobre todas as proposições que têm a dita forma, como em matemática, geralmente se constatará que não é indispensável uma palavra para a forma; em teoria, provavelmente ela nunca é indispensável.

Se admitirmos — como penso podermos fazer — que as formas das proposições podem ser representadas pelas formas das proposições nas quais são expressas sem qualquer palavra especial para as formas, devemos chegar a uma linguagem na qual tudo o que seja formal pertence à sintaxe e não ao vocabulário. Numa tal linguagem poderíamos exprimir todas as proposições da matemática, mesmo se não soubéssemos uma só palavra da linguagem. A linguagem da lógica matemática, caso fosse aperfeiçoada, seria uma tal linguagem. Teríamos símbolos para as variáveis, tais como «x» e «R» e «y», combinados de várias maneiras; e a maneira de combinar indicaria que algo estaria a ser declarado verdadeiro para todos ou alguns valores das variáveis. Não necessitariamos de conhecer qualquer das palavras,
porque elas só seriam necessárias para dar valores às variáveis, o que constitui o assunto dos matemáticos que fazem matemática aplicada, não dos matemáticos ou lógicos puros. Uma das marcas características de uma proposição da lógica é que, dada uma linguagem apropriada, uma tal proposição pode ser afirmada em tal linguagem por uma pessoa que conheça a sintaxe sem conhecer uma única palavra do vocabulário.

Mas, afinal de contas, há palavras que exprimem a forma, tais como «é» e «do que». E, em todo o simbolismo até agora inventado para a lógica matemática, há símbolos que têm significados formais constantes. Podemos tomar como exemplo o simbolo de incompatibilidade que é empregue na estruturação das funções de verdade. Tais palavras ou símbolos podem ocorrer em lógica. A questão é: como defini-los?

Tais palavras ou símbolos exprimem as chamadas «constantes lógicas». As constantes lógicas podem ser definidas exactamente como definimos as formas; na verdade, elas são, em essência, a mesma coisa. Uma constante lógica fundamental será aquela que é comum a várias proposições, cada uma das quais pode resultar de qualquer outra por substituição de uns termos por outros. Por exemplo, «Napoleão é maior do que Wellington» resulta de «Sócrates é anterior a Aristóteles», pela substituição de «Sócrates» por «Napoleão», «Aristóteles» por «Wellington» e «anterior» por «maior». Algumas proposições podem ser obtidas desta maneira do protótipo «Sócrates é anterior a Aristóteles» e outras não; as que podem são as da forma «x R y», isto é, exprimem relações binárias. Não podemos obter do protótipo acima, pela substituição termo a termo, proposições como «Sócrates é humano» ou «os atenienses deram a cicuta a Sócrates», porque a primeira é da forma sujeito-predicado e a segunda exprime uma relação ternária. Para que tenhamos palavras na nossa linguagem lógica pura, elas devem ser tais que exprimam «constantes lógicas», e as «constantes lógicas» serão sempre, ou derivam-se sempre a partir do que é comum entre um grupo de proposições deriváveis umas das outras, da maneira acima, por substituição termo a termo. E isto que há em comum é o que chamamos «forma».

Neste sentido, todas as «constantes» que ocorrem na matemática pura são constantes lógicas. O número 1, por exemplo, é derivado de proposições da forma: «Há um termo c tal que φx é verdadeira quando e somente quando x é c.» Isto é uma função proposicional de φ, e várias proposições diferentes resultam de dar valores diferentes a φ. Podemos (com uma pequena de omissão dos passos intermédios que não são relevantes para os nossos propósitos actuais) tomar a
função proposicional de \(\phi \) acima como o que significa dizer «a classe determinada por \(\phi \) é uma classe singular» ou «a classe determinada por \(\phi \) é membro de 1» (sendo 1 uma classe de classes). Desta maneira, as proposições em que 1 ocorre adquirem significado que se deriva de certa forma lógica constante. E o mesmo será o caso com todas as constantes matemáticas: todas são constantes lógicas, ou abreviaturas simbólicas cujo uso pleno num contexto adequado é definido por meio de constantes lógicas.

Mas embora todas as proposições lógicas (ou matemáticas) possam ser expressas inteiramente em termos de constantes lógicas juntamente com variáveis, não se dá o caso inverso de todas as proposições que podem ser expressas desta maneira serem lógicas. Encontrámos até agora um critério necessário, mas não suficiente para as proposições matemáticas. Definimos suficientemente o carácter das noções primitivas em termos das quais todas as noções da matemática podem ser definidas, mas não das proposições primitivas das quais todas as proposições da matemática podem ser deduzidas. Isto é um assunto mais difícil, para o qual não se conhece até agora a resposta completa.

Podemos tomar o axioma do infinito como um exemplo de proposição que, embora possa ser enunciada em termos lógicos, não pode ser declarada verdadeira pela lógica. Todas as proposições da lógica têm uma característica que se costumava exprimir dizendo que eram analíticas, ou que as suas contraditórias eram auto-contraditórias. Esta maneira de dizer não é, contudo, satisfatória. A lei da contradição é meramente uma de entre as proposições lógicas; não tem qualquer proeminência especial; e a prova de que a contraditória de alguma proposição é auto-contraditória deverá provavelmente exigir outros princípios de dedução além da lei da contradição. Não obstante, a característica das proposições lógicas que buscamos é aquela que foi intuida, e supostamente definida, pelos que diziam que ela consistia na derivabilidade a partir da lei da contradição. Esta característica, que podemos, de momento, chamar tautologia, não pertence obviamente à asserção de que o número de indivíduos no universo é \(n \), seja qual for o número \(n \). Não fosse a diversidade de tipos lógicos, seria possível provar logicamente que há classes de \(n \) termos, para \(n \) qualquer inteiro finito \(n \); ou até que há classes de \(\aleph_0 \) termos. Mas, devido aos tipos, tais provas, como vimos no Cap. XIII, são falaciosas. Ficamos entretanto à observação empírica para determinar se há \(n \) indivíduos no mundo. Entre os mundos «possíveis», no sentido leibnitziano, haverá

147 [Também chamada lei da não-contradição: nenhuma proposição pode ser e não ser verdadeira ao mesmo tempo.]
mundos com um, dois, três... indivíduos. Não parece haver qualquer necessidade lógica para que haja sequer um só indivíduo — para que, na realidade, haja sequer um mundo. A prova ontológica da existência de Deus, caso fosse válida, estabeleceria a necessidade lógica de pelo menos um indivíduo. Mas esta prova é geralmente reconhecida como inválida pois assenta, na realidade, num ponto de vista errado sobre a existência — isto é, falha no reconhecimento de que a existência só pode ser afirmada acerca de algo que foi descrito, não de algo apenas nomeado, de modo que é destituído de sentido argumentar das premissas «isto é tal-e-tal» e «o tal-e-tal existe» para a conclusão «isto existe». Se rejeitarmos o argumento ontológico, parece sermos levados a concluir que a existência de um mundo é um acidente — quer dizer, não é logicamente necessária. Se assim for, nenhum princípio de lógica pode afirmar a «existência», excepto sob uma hipótese, isto é, nenhum pode ser da forma «a função proposicional tal-e-tal é algumas vezes verdadeira». As proposições desta forma, quando ocorrem na lógica, terão de ocorrer como hipóteses ou consequências de hipóteses, não como proposições asseridas completas. As proposições asseridas completas da lógica serão tais que afirmem que alguma função proposicional é sempre verdadeira. Por exemplo, é sempre verdade que, se p implica q e q implica r, então p implica r, ou que, se todos os α são β e x é um α, então x é um β. Tais proposições podem ocorrer em lógica e a sua verdade depende da existência do universo. Podemos convencionar que, se não houvesse um universo, todas as proposições gerais [universais] seriam verdadeiras; porque a contraditória de uma proposição geral é (como vimos no Cap. XV) uma proposição a afirmar a existência, e, portanto, seria sempre falsa se não existisse um universo.

As proposições lógicas são de modo a poderem ser conhecidas a priori, sem estudar o mundo real. Só através do estudo de factos

148 As proposições primitivas em Principia Mathematica são de modo a permitir a inferência de que existe pelo menos um indivíduo. Mas hoje considero isto como um defeito na pureza lógica.
149 [A expressão em inglês é «complete asserted propositions», onde «complete» significa algo como «incondicional» ou «categórico», não dependente de hipótese alguma. Podíamos chamar-lhes simplesmente leis lógicas. Deve dizer-se que na época em que este livro foi escrito, as distinções entre sintaxe e semântica, entre derivabilidade e consequência, ainda não estavam bem clarificadas. Tal clarificação ocorrerem em meados dos anos 30 com os trabalhos sobre sistemas dedutivos e formalização da semântica por Alfred Tarski (ver o artigo “The concept of truth in formalized languages” (1933) em A. Tarski, Logic, Semantics, Metamathematics, 153-278.]
empíricos é que sabemos que Sócrates é um homem, mas temos conhecimento da correção do silogismo na sua forma abstracta (isto é, quando ele é enunciado em termos de variáveis) sem necessitar de qualquer recurso à experiência. Isto não é uma característica das proposições lógicas em si, mas da maneira pela qual as conhecemos. Tem, contudo, um impacto sobre a questão sobre qual poderá ser a sua natureza, porquanto há alguns tipos de proposições que seria muito difícil supor serem conhecidas sem experiência.

É claro que a definição de «lógica» ou «matemática» deve ser buscada através da tentativa de dar uma nova definição da velha noção de proposições «analíticas». Embora não possamos mais aceitar definir as proposições lógicas como sendo aquelas que se seguem da lei da contradição, podemos e devemos admitir ainda que elas são uma classe de proposições inteiramente diferente das que chegamos a conhecer empiricamente. Todas elas possuem a característica que, há pouco, concordámos em chamar «tautologia». Isto, combinado com o facto de que podem ser inteiramente expressas em termos de variáveis e constantes lógicas (sendo uma constante lógica algo que permanece constante numa proposição até mesmo quando todas as suas componentes são mudadas), dará a definição de lógica ou matemática pura. De momento, não sei como definir «tautologia.» Seria fácil apresentar uma definição que seria satisfatória por algum tempo; mas não conheço definição alguma que sinta ser satisfatória, apesar de me sentir inteiramente familiarizado com a característica da qual se deseja uma definição. Neste ponto, portanto, e por enquanto, atingimos a fronteira do conhecimento na nossa jornada de volta aos fundamentos lógicos da matemática.151

150 A importância da «tautologia» para uma definição de matemática foi-me apontada pelo meu ex-aluno Ludwig Wittgenstein, que trabalhava no problema. Não sei se ele resolveu ou até se ele está vivo ou morto. [Wittgenstein nasceu em Viena em 1889 e faleceu em Cambridge, Inglaterra, em 1951, onde se doutorou em 1930 (apresentando como tese o polémico e influente Logische-Philosophische Abhandlung, publicado em 1921, mais conhecido por Tractatus logico-philosophicus, em tradução inglesa de 1922). No prefácio desta obra singular exprime o reconhecimento pelo estímulo que os seus pensamentos receberam da leitura dos «grandes trabalhos» de Frege e dos escritos do seu amigo Bertrand Russell.]

151 [Ver Nota 149. Hoje em dia o termo «tautologia» tem um significado um tanto mais restrito do que parece ser a ideia de Russell. Mais próximo desta ideia é o termo actual de «proposição universalmente válida», de que as tautologias do cálculo proposicional (o cálculo das conectivas e, ou, não, se...então, se e só se) são casos particulares.]
Chegámos agora ao fim da nossa introdução algo sumária à filosofia matemática. É impossível transmitir adequadamente as ideias contidas neste assunto enquanto nos abstivermos do uso de símbolos lógicos. Como a linguagem ordinária não tem palavra alguma que exprima exactamente o que desejamos exprimir, torna-se necessário, enquanto aderirmos à linguagem ordinária, forçar as palavras a terem significados fora dos usuais; e o leitor tende certamente, após algum tempo, se não mesmo logo de início, a recair na atribuição dos significados usuais às palavras, chegado assim, a noções errôneas sobre o que se pretende dizer. Mais ainda, a gramática e a sintaxe ordinárias são extraordinariamente enganosas. Este é o caso, por exemplo, em relação aos números; «dez homens» é, gramaticalmente, da mesma forma que «homem branco»;\(^{152}\) de modo que se pode pensar que 10 seja um adjetivo que está a qualificar «homens». Analogamente, quando estão envolvidas funções proposicionais, e, em especial, no tocante à existência e às descrições. Porque a linguagem é enganosa, e também porque ela é difusa e inexata quando aplicada à lógica (para a qual não era intencionada), o simbolismo lógico é absolutamente necessário para um tratamento exacto ou completo do nosso assunto. Portanto, espera-se que aqueles leitores que desejarem adquirir um domínio dos princípios da matemática não recuem perante a tarefa de dominar os símbolos — um trabalho que, na realidade, é muito menor do que se poderá pensar. Como o estudo apressado acima deve ter evidenciado, há inumeráveis problemas não resolvidos na matéria, sendo necessário muito trabalho. Se algum estudante for levado a um estudo sério da lógica matemática por este livrinho, este terá servido o principal propósito com que foi escrito.

\(^{152}\) [Em inglês, «ten men» e «white men» têm a mesma forma aparente (substantivo «men» no fim).]
ÍNDICE REMISSIVO

Agglomerado, 180
Agregado, 25
Álfe(s), 91, 98-99, 104, 127, 133
Algumas, 158 e segs.
Almeida, P., 112
Amontoado, 180
Análise, 13
 não-standard, 112
Aplicação, 113
Argumento de uma função, 57, 113
Aritmetização da matemática, 16
Ascendente, 38, 38, 45, 47-48
Axiomas, 13
 da escolha, 95, 127, 131
 da reduzibilidade, 8, 188
 do infinito, 8, 85, 134
 multiplicativo, 8, 95, 126, 131
Beltrami, E., 146
Bolzano, B., 140
Botas e meias, 129
Brentano, F., 169
Cadeia, 14 e segs.
 bem-ordenada, 99, 106, 127
 fechada, 109
 dedekindiana, 79, 81, 107
 densa, 75
 densa em si mesma, 109
 infinita, 96 e segs.
 perfeita, 108
Campo de uma relação, 44
Caraça, B. J., 104, 112
Classe mediana, ver Classe densa em
Classe(s)
 densa em, 110
 equinumerosas, ver equipotências
 nula ou vazia, 35, 135
 reflexiva, 87, 131, 140
Clifford, W.K., 83
Colecção
 infinita, 107
Conjunção, 147
Consecutividade, 48
Constantes, 197
Construção
 método de, 81
Contagem, 28, 30
Continuidade, 10, 103
 cantoriana, 107, 110
 dedekindiana, 107, 110
 de funções, 112 e segs.
 na filosofia, 111
Contradições, 138 e segs.
Contrapartes objectivas, 70
Convergência, 119
Curvelo, E., 7
Dedekind, R., 18, 77, 79, 106-107, 111, 140
Dedução, 145 e segs.
Definição, 15
 extensional e intensional, 25
Derivabilidade formal, 154
Derivados, 106
Descrições, 141, 145, 167 e segs.
Destinatário, 59
Dimensões, 41
Disjunção, 147
Diversidade, 44
Dominio, 29
 inverso, 29
Einstein, A., 7
Equinumerosidade, ver Equipotência
Equipotência, 29
Introdução à Filosofia Matemática

Equivalência, 181
formal, 181
Espaço, 71, 93, 142
Estar entre, 49 e segs., 68
Estrutura, 69 e segs.
Euclides, 75
Existência, 164, 171, 177
Exponenciação, 94, 124
Extensão, 25
de uma relação, 69

Ficções lógicas, 56, 139-140, 179
Filosofia matemática, 8, 11, 13
Finito, 40
Fluxo, 111
Forma, 193
Frações, 26, 49, 73
Frege, G., 19, 24, 38, 85, 102, 164
Fronteira, 79-81, 105-107, 109, 116
Funções, 57
descriptivas, 57, 178
de verdade, 148
extensionais, 184
intensionais, 184
predicativas, 186
proposicionais, 57, 145, 153 e segs.

Generalização, 157
Geometria, 41, 49-50, 67-69, 75, 81-82, 107, 192
analítica, 16, 93
plana, 83
projectiva, 192

Geração
de cadeias, 47
de relações, 49
Gonçalves, J. V., 104

Hegel, G. W. F., 112
Hereditariedade, 34

Implicação, 147, 154
estrita, 154
formal, 163
Implicar diversidade, 44
incomensuráveis, 16, 75
Incompatibilidade, 147 e segs., 196
Indiscerníveis, 189
Individuos, 134, 142, 173
Indução matemática, 18 e segs., 85, 88, 90, 94, 183
generalizada, 47, 99
Inferência, 147 e segs.
Infinidade, 27,
Infinitude, 10
cantoriana, 74
das cadeias, 96 e segs.
dos cardinais, 85 e segs.
dos ordinais, 96 e segs.
dos racionais, 74
Inteiros, 59
negativos, 72
positivos, 72
Intervalos, 114
Intuição, 145
Irracionais, 72, 75, 78
Kant, E., 145-146
Klein, F., 146

Lacuna dedekindiana, 78 e segs., 106
Leibniz, W., 88, 112, 189
Lei
associativa, 67, 100
comutativa, 67, 100
distributiva, 67, 100
Lewis, C. I., 154
Límite, 41, 78 e segs., 103
de funções, 112 e segs.
inferior, 78
superior, 78
Lógica, 157, 169, 194
matemática, 8, 196, 201
Logificação da matemática, 19

Maio, 74, 97
<table>
<thead>
<tr>
<th>Índice remissivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapa, 62, 70, 88</td>
</tr>
<tr>
<td>Matemática, 191 e segs.</td>
</tr>
<tr>
<td>Maximal, 104</td>
</tr>
<tr>
<td>Máximo, 77, 104</td>
</tr>
<tr>
<td>Meias e botas, 129</td>
</tr>
<tr>
<td>Meinong, A., 169</td>
</tr>
<tr>
<td>Menor, 74, 97</td>
</tr>
<tr>
<td>Método, 11</td>
</tr>
<tr>
<td>Minimal, 104</td>
</tr>
<tr>
<td>Mínimo, 77, 105</td>
</tr>
<tr>
<td>Modalidade, 165</td>
</tr>
<tr>
<td>Multiplicação, 121 e segs.</td>
</tr>
<tr>
<td>Multiplicidade, 25</td>
</tr>
<tr>
<td>Necessidade, 165</td>
</tr>
<tr>
<td>Newton, I., 112</td>
</tr>
<tr>
<td>Nicod, J. G., 149-150, 152-153</td>
</tr>
<tr>
<td>Noções primitivas, 36-37, 147, 161, 198</td>
</tr>
<tr>
<td>Nomes, 172, 180 relativos, 173</td>
</tr>
<tr>
<td>Número(s),</td>
</tr>
<tr>
<td>cardinal, 22 e segs., 66, 85 e segs.</td>
</tr>
<tr>
<td>complexo, 81</td>
</tr>
<tr>
<td>-de-similaridade, 65 e segs., 100</td>
</tr>
<tr>
<td>finito, 33 e segs.</td>
</tr>
<tr>
<td>indutivo, 39, 86, 131</td>
</tr>
<tr>
<td>infinito, 39, 40</td>
</tr>
<tr>
<td>irracional, 72, 80</td>
</tr>
<tr>
<td>multiplicável, 133</td>
</tr>
<tr>
<td>natural, 15 e segs., 35</td>
</tr>
<tr>
<td>não-indutivo, 94, 131</td>
</tr>
<tr>
<td>real, 75, 80, 91</td>
</tr>
<tr>
<td>construção de, 81</td>
</tr>
<tr>
<td>reflexivo, 87</td>
</tr>
<tr>
<td>relacional, ver Número-de-similaridade</td>
</tr>
<tr>
<td>O, 167, 172 e segs.</td>
</tr>
<tr>
<td>Ockham, W., 181</td>
</tr>
<tr>
<td>Ocorrências</td>
</tr>
<tr>
<td>primárias, 177</td>
</tr>
<tr>
<td>secundárias, 177</td>
</tr>
<tr>
<td>Ordem, 41 e segs.</td>
</tr>
<tr>
<td>cíclica, 50</td>
</tr>
<tr>
<td>Originário, 59</td>
</tr>
<tr>
<td>Oscilação final, 116</td>
</tr>
<tr>
<td>Parmênides (de Platão), 140</td>
</tr>
<tr>
<td>Particulares, 142 e segs., 157, 172</td>
</tr>
<tr>
<td>Peano, G., 17-23, 35-37, 56, 85, 89-90, 134, 164</td>
</tr>
<tr>
<td>Peirce, C. S., 44, 148</td>
</tr>
<tr>
<td>Permutações, 61</td>
</tr>
<tr>
<td>Pitágoras, 16, 75-76</td>
</tr>
<tr>
<td>Platão, 140</td>
</tr>
<tr>
<td>Pluralidade, 24</td>
</tr>
<tr>
<td>Poincaré, H., 39</td>
</tr>
<tr>
<td>Pontos, 68</td>
</tr>
<tr>
<td>limites, 106</td>
</tr>
<tr>
<td>Posteridade, 34 e segs. prípria, 47</td>
</tr>
<tr>
<td>Postulação método de, 79, 81</td>
</tr>
<tr>
<td>Postulados, 79</td>
</tr>
<tr>
<td>Precedente, 104</td>
</tr>
<tr>
<td>Pré-imagem, 105</td>
</tr>
<tr>
<td>Premissas da aritmética, 18</td>
</tr>
<tr>
<td>Produto cartesiano, 122</td>
</tr>
<tr>
<td>Progressões, 14, 21, 89 e segs.</td>
</tr>
<tr>
<td>Proposições, 156 analíticas, 200 elementares, 161 primitivas, 17</td>
</tr>
<tr>
<td>Propriedade hereditária, 34</td>
</tr>
<tr>
<td>indutivas, 34</td>
</tr>
<tr>
<td>Prova ontológica, 199</td>
</tr>
<tr>
<td>Quantidade, 103, 192</td>
</tr>
<tr>
<td>Razões, 73, 79, 91, 136</td>
</tr>
<tr>
<td>Referent, ver Originário</td>
</tr>
<tr>
<td>Relação(ões) aliorelativa, 44 assimétrica, 43, 53 composta (ou quadrada), 44 conexa, 44, 46 de consecutividade, 48</td>
</tr>
</tbody>
</table>
derivada, 53
de equivalência, 30
de similaridade (ou semelhança), 62 e segs.
inversa, 29,
irreflexiva, 44, 46
muitos-para-um, 28
um-para-muitos, 28, 55,
um-para-um, 28, 56, 73
reflexiva, 29
serial, 46
simétrica, 29
similares, 63
transitiva, 29, 46
Relatum, ver Destinatário
Representantes, 123
Rigor, 145
Robinson, A., 112
Royce, J., 88-89
Secção
dedekindiana, 77 e segs.
final, 115
Segmento, 80, 105
Semelhança, ver Relações de similaridade
Silogismo, 193
Símbolos incompletos, 179
Similaridade
de classes, 87
de relações, 63
Sheffer, H. M., 149
Sócrates, 141
Subclasse, 66, 92 e segs.
Subtração, 82
Sucessor de um número, 17, 36
imediato, 17, 37
Sujeitos, 143
Tabelas de verdade, 147
Tautologia, 198, 200
Tempo, 70, 75, 93, 142
Todos, 159 e segs.
Valor lógico, 147
Vizinhança, 103, 110, 114,
LEITURAS RECOMENDADAS

207

